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Abstract

Crop production is highly affected by water scarcity, which has a negative impact on
food security. Crop Water Productivity (CWP), defined as crop yield per cubic meter of water
consumption, enhances agricultural production, especially in irrigation-based farming. Therefore,
CWP has been recognized as a critical performance-based evaluation indicator for resilient
agriculture. Although the estimation of CWP has been achieved in previous studies, using
ground-based methods, coarse spatial and temporal resolution-based imagery, statistical
methods, and limited application of machine and deep learning calls for further analysis. This
study aimed to: i) estimate maize yield and determine evapotranspiration (ET) values based on
analyzed maize crop phenological period in Bura Irrigation Scheme; ii) estimate maize crop
water productivity and analyze the spatial distribution of CWP; iii) develop machine learning
models for the estimation of CWP for maize crops and use the machine learning models for

CWP estimation in the study area.

The methods involve Data fusion (MODIS, Landsat, and Sentinel-2) to obtain daily high
spatial resolution datasets, estimation of Evapotranspiration (ET) using the SEBAL algorithm
and Penman-Monteith (P-M) equation, the estimation of yield by Biomass-Harvest index method
and CWP as the ratio of yield and ET. In addition, the XGBoost model was developed to
improve the estimation of CWP. The results from statistical and machine learning-based
estimations were temporally and spatially consistent across the Bura Irrigation scheme (Tana
River County, Kenya). Yield averaged 3.3 t/ha, below the global average of 4.9 t/h. On the other
hand, the ET averaged 56mm, and CWP averaged 5.1 kg/m? during the maize growing seasons,
indicating overage productivity. Spatially, the productivity within Bura Irrigation was higher in
the central and northern regions than in the southern regions throughout the study period. The
XGBoost model successfully estimated CWP, Yield, and ET using imagery bands and
specifically calculated indices. The model achieved an accuracy R? > 75% for the target variable,
where ET had the highest (91%) learning and prediction rate. The machine learning (ML)
estimate of CWP was 5.8, close to the statistical average. Finally, these results show the need to
use CWP and ML estimation methods to enhance agricultural resilience, resulting in increased

food security.
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Introduction

1.1 Background

Agriculture is the backbone of many economies, providing food and livelihoods for
millions of people worldwide. However, increasing demand for food coupled with the effects of
climate change has strained water resources, leading to water scarcity in many regions. Water
scarcity refers to the limited availability of freshwater resources to meet the demands of various
sectors, including agriculture. This significant challenge affects agricultural production and food
security in many regions of the world (Booker & Trees, 2020). Agriculture depends entirely on
water, which can be both rainfed or irrigated. Estimation of water used and yield produced is

therefore necessary. This is enhanced through crop water productivity.

Crop water productivity (CWP) is generally defined as crop yield per cubic meter of water
consumption or the ratio of yields to evapotranspiration during the growing season (H. Gao et al.,
2023; Hellegers et al., 2009). Crop water productivity estimation is a crucial aspect of precision
agriculture, which aims to optimize agronomic inputs like water, pesticides, and fertilizers to meet
the growing demand for food while minimizing the use of natural resources like land and fresh
water. The productivity of crops can vary depending on whether they are grown in rain-fed or

irrigated agriculture systems.

Irrigated agriculture accounts for an estimated 70% of total freshwater withdrawals
worldwide, and in many drier countries, agricultural water use accounts for more than 90% of total
withdrawals (Scheierling & Tréguer, 2018). As water becomes increasingly scarce, the
management of agricultural irrigation moves to the center of water management concerns. Without
advances in management and more integrated policy-making in developed and developing
countries, water scarcity and related water problems will significantly worsen over the next several
decades. The transition from an expansionary to a maturing water economy has led to the need for
more efficient water use in agriculture. The concept of water productivity, which denotes the
relationship between marketable yield and the seasonal water use by the plant through
evapotranspiration, is an important indicator to express the resource use efficiency and can provide
an assessment of crop performance under different irrigation strategies (Hommadi & Almasraf,

2019). Rain-fed agriculture, on the other hand, is characterized by low average yields compared
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to irrigated agriculture, as rainfall rarely meets the time with the required amount of water
application for plant growth. The performance of rain-fed productivity remains low and stable for
most crops, and crop production is undulating under rain-fed agriculture. In many countries, rain-
fed areas are the critical cultivation areas with the largest concentration of rural poverty spanning
several agroecological regions. The low efficiency of water uses and management in agriculture is
a significant challenge, and one of the contributing factors to low crop productivity and balance is

drought.

Estimations of CWP are affected by drought conditions. Therefore, understanding the
climatic conditions of the region of interest is paramount for such studies. According to (Sarshad
et al., 2021), drought is the most significant environmental stress in arid and semiarid regions,
which has restricted agricultural development. Those agricultural activities that have to survive in
such areas are exposed to extreme temperatures, variations in rainfall, long solar radiation hours,
and so on. Kenya is particularly vulnerable to drought due to its geography and climate. Several
droughts are common in agricultural lands in Kenya and most tropical regions. The different types
of droughts, their severity, and their impacts depend on various factors, such as the duration,
intensity, and spatial extent of the drought event. Meteorological drought is the most common type
of drought, which occurs when there is a prolonged period of below-average precipitation.
Agricultural drought refers to the impact of meteorological drought on crop production. In contrast,
hydrological drought is characterized by low water availability in rivers, lakes, and groundwater
as drought impact on agriculture influences crop evapotranspiration (ET) and general yield
obtained, hence the need to look into how to manage available water resources for maximum
production in drought conditions. This brings us to why CWP has established itself as a recognized
indicator for evaluating progress toward SDG 6.4, which calls for much greater water usage
efficiency (Blatchford et al., 2018; Ghorbanpour et al., 2022).

The level of CWP estimation varies with scale, including at the farm and regional levels.
Several factors, including data and the extent of the study area, influence such estimation's
robustness. Farm-level estimation is challenging and limited in one way, considering the high
volume of estimation data required when performing time series estimation. Traditionally, CWP
has relied on labor-intensive and time-consuming field-based methods, such as lysimeters and soil

moisture sensors. These methods are often limited in spatial coverage and cannot provide real-
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time data for large-scale agricultural areas. Moreover, they may not account for spatial variations
in soil moisture and crop water requirements within a field. This has given way to remote sensing
for crop water productivity estimations. Remote sensing can help estimate actual
evapotranspiration (ET) and crop yield, which are important factors in CWP estimation
(Ghorbanpour et al., 2022; Gao et al., 2023). This is important for improving regional agricultural
water use efficiency and conservation levels. Finally, remote sensing coupled with machine

learning has increased in many fields, including agriculture and water use efficiency estimation.

Machine learning is becoming an increasingly popular tool for estimating crop water
productivity. Existing machine learning methods continue to prove to be more reliable through
data fusion and the combination of several models (Elbeltagi et al., 2022). On remote sensing data
for farming, many machine learning algorithms have been applied, including random forests (RFs),
support vector machines (SVMs), artificial neural networks (ANNS), genetic algorithms (GAS),
and ensemble learning (Virnodkar et al., 2020; Sadri et al., 2022). Particularly in geographic
classification and remote sensing data prediction, RF applications have gained popularity for
resolving data overfitting (Sadri et al., 2022; Vergopolan et al., 2021; Saini & Ghosh, 2018).
Although machine learning has been used in many fields, such as yield estimation (Islam et al.,
2023), weather forecasting (Patel et al., 2021), and remote sensing, it is underutilized in crop water
productivity estimation. The variation is from the global level to the country and local level.
Therefore, this study focuses on CWP estimation at the local level and specifically in irrigation

schemes in the eastern part of Kenya - Bura Tana River Scheme.

The Bura Irrigation Scheme covers a total area of 5,360 hectares, although only 3,340
hectares are now used for irrigation due to a lack of water resources. Still, there is potential to
enhance water availability, allowing irrigation of more significant areas and increasing maize
output, which is now low. The plan now yields 3.5 tons per hectare of commercial maize and 4.4
tons per hectare of seed maize. (Muigai David et al., 2019). This is less than the 4.9 t ha-1 average
for the entire world value. Therefore, accurate water management in this area is essential, and
proper estimates of how water is used and yield produced will be necessary. Using machine
learning coupled with remote sensing will allow proper mitigation measures to be applied.
Therefore, CWP estimation is necessary to boost production while withstanding drought

conditions and help reduce the growing water scarcity.
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1.2 Statement of the Problem

One of the significant challenges in agricultural systems, particularly in irrigation schemes
in Kenya, is the limited availability of water resources. Water scarcity continues to increase due to
the impact of climate change. According to the UN's 2022 report, over 85% of the wetlands on our
planet have been lost for over 300 years. The water crisis problem has been worsened by factors
such as water contamination, population increase, urbanization, and inadequate management of
water resources. Therefore, food security is going to be impacted by water shortage (Mulwa et al.,
2021). On the other hand, drought continues to rage in Kenya, resulting in reduced agricultural

land and affecting agricultural production, especially in the supply of water for production.

The physiological and biochemical processes of plants are predicted to be affected by soil
water stress, which is a significant barrier to agricultural production, particularly in arid and semi-
arid lands (ASALs) (M. N. et al., 2015); Mbayaki, 2021). By managing crops and water poorly,
plant quality and yields may be harmed (Fan et al., 2012; Mbayaki, 2021).

Accurate estimation of CWP requires comprehensive data on crop growth, soil moisture,
and water availability. However, obtaining such data is challenging and often needs to be improved
in the Bura Irrigation Scheme. Existing water productivity methods are limited, and the data used
significantly contributes to this effect. Bura Irrigation scheme, being among the largest in Kenya,
has faced low records of yield production, as outlined in a paper by (Muigai et al., 2019). The
scheme relies on water from river Tana, which is 50 km away. Over recent years, the river Tana's
water level has been reducing due to drought effects upstream. This impacts the downstream water
supply for agricultural purposes, including the Bura Irrigation scheme. Optimizing water use
efficiency in such scenarios is crucial for sustainable and resilient agriculture. However,
conventional irrigation practices often result in inefficient water use and lower crop productivity.
There is a need to address this problem by developing methods to estimate and improve crop water
productivity by utilizing remote sensing (RS) and machine learning techniques. Effective water
management strategies can be devised to enhance agricultural productivity while conserving water

resources by accurately assessing water requirements and usage patterns.

Water scarcity continues to rage in arid and semi-arid lands due to drought. Bura Irrigation
scheme, within agro-ecological zone V (semi-arid to arid), obtains its water from the Tana River,

which is 50 km away, by pumping water from the river (National Irrigation Authority, 2023). In
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addition, the area experiences low rainfall of about 400mm. High Temperatures are experienced
all year round with slight seasonal variation. Mean maximum temperatures never fall below 31°C,
and average minimum temperatures are above 20°C. All these factors make the agricultural area
more vulnerable and costly, especially in the case of water pumping to meet crop water needs in
the area. Water Crop water productivity is a crucial requirement for increased agricultural
production because crop water is needed to substitute for water loss by transpiration and soil

evaporation (Mbayaki, 2021)

Over the recent years, food insecurity has affected many parts of Kenya, with Eastern and
Northern regions being highly affected. According to the Integrated Food Security Phase
Classification (IPC), in 2023, an estimated 4.4 million people in ASALs will face acute food
insecurity. Generally, acute food insecurity has affected around 37% of the population in Kenya
between 2022 and 2023 and is expected to increase. Food insecurity continues to rise with
increasing agricultural drought events, rapid population growth, water pollution reducing water
use for agricultural purposes, and high demand that strains available water resources. In addition,
Kenya declared In September 2021 the East African state of Kenya drought emergency. The
affected drought areas (ASALs) continually received low rainfall for the season between
November and December (International Committee of the Red Cross, 2022), leading to low
agricultural production. With all these drought events, agricultural production can be optimized
to survive water scarcity and boost productivity by managing available water resources. CWP
serves as the best alternative for the estimation of crop productivity in existing irrigation schemes
and may serve as a near real-time decision-making tool on water management to increase

agricultural production, hence increasing food security.

1.3 Justification
Accurately estimating and optimizing crop water productivity (CWP) is crucial for
agriculture resilience under water scarcity and drought conditions. This is especially important
for farming regions like Kenya's arid and semi-arid lands (ASALSs), which face chronic water
deficit challenges (Booker & Trees, 2020; Sarshad et al., 2021). One such region is the Bura

Irrigation Scheme in Tana River County. However, river flows have declined with increasing
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drought severity and rainfall variability (Mulwa et al., 2021), threatening irrigation availability

downstream and requiring improved water use efficiency.

This research addresses the urgent need for enhanced food security amidst increasing
aridity in Bura and other ASAL croplands (Integrated Food Security Phase Classification, 2023;
International Committee of the Red Cross, 2022). Insights into spatiotemporal CWP patterns can
bolster resilience by targeting interventions like deficit irrigation (Shoukat et al., 2021), drainage
upgrades, or alternative agronomic practices to raise productivity in struggling zones first (Jaafar
& Ahmad, 2020;). If successful, the procedures could be expanded to additional Kenyan
irrigation districts challenged by drought and irregular river flows (Mulwa et al., 2021).
Strategically stretching limited water supplies, remote sensing, and machine intelligence
(Elbeltagi et al., 2022; Khan et al., 2018) may help shield vulnerable breadbasket areas.

1.4 Research Identification and Objectives
1.4.1 Research Objectives

The main objective was to estimate crop water productivity using remote sensing and machine
learning techniques from 2018 to 2022 in the Bura irrigation scheme to support irrigation

management and improve agricultural resilience. Specific objectives include:

%+ To estimate maize yield and determine evapotranspiration (ET) values based on analyzed
maize crop phenological period in the study area,

% To estimate maize crop water productivity and analyze the spatial distribution of CWP,

% To develop machine learning models estimating crop water productivity (CWP) for maize

crops and use the machine learning models for CWP estimation in the study area.

1.4.2 Research Questions

The following questions are formulated for this specific study.
- How do water scarcity and drought adversely affect crop productivity within the Bura
Irrigation Scheme?
- In what ways can machine learning be effectively employed to enhance Crop Water
Productivity (CWP) modeling, and what are the current levels of utilization of this

emerging tool in addressing water-related challenges in agricultural settings?
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- What specific factors contribute to the low crop water productivity and frequent
droughts in Kenya's Arid and Semi-Arid Lands (ASALS), particularly in agricultural
regions, and how do these factors contribute to food insecurity?

1.5 Study outline

This research study is divided into 6 chapters, whereby the first chapter introduces.

The study details the background, statement of the problem, justification of the problem, and
objectives. Chapter 2 contains the reviewed literature related to this topic. Further, Chapter 3 shows
the data and methods used in the study, with Chapter 4 highlighting the results of the findings from
the methods. Chapter 5 discusses the findings, and Chapter 6 concludes and recommends future

research that might not be addressed at this level of geoscientific exploration and expertise
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2. Literature review

2.1 Water Use and Water Productivity

Crop water productivity (CWP) is an important concept in agronomy that seeks to
maximize viable yields per unit of water used in rain-fed and irrigated agricultural operations.
CWP may be accomplished by increasing crop marketable yields per unit of transpired water and
decreasing water loss from the soil water balance (Mbayaki, 2021). Water use and efficiency refer
to CWP and are frequently used synonymously.

Crop water productivity (CWP) is essential in irrigated agriculture for food and the
environment's security, especially when water becomes limited. (Bekchanov et al., 2012).
Estimates have already been made using crop models in previous research. Crop modeling is an
effective method for calculating WP and is important in water management. (Soomro et al., 2019).
Commonly used crop models for maize include CERES-Maize (Crop Environment Resource
Synthesis), SWAT, SWAP (Soil Water Atmosphere Plant), AQUACROP, CROPWAT, and more.
The CERES-Maize model (Cuculeanu et al., 2002) is specifically designed to simulate the growth,
development, and yield of maize (corn) crops under different agroclimatic and management
conditions. It has been widely used to assess crop water productivity for maize and to study the
impact of water management strategies on maize production (Kisekka et al., 2017; Sen et al.,
2023). The model incorporates a comprehensive water balance approach, considering various
inputs and outputs for the maize crop. These inputs include rainfall, irrigation, and soil water
content, while outputs include evapotranspiration (ET) and drainage losses. The model estimates
how efficiently the maize crop uses water to produce yield by simulating the water balance.
Nonetheless, other crop models can accurately estimate crop water productivity, such as the FAO
Aqua Crop model. The Agua Crop model simulates attainable yields of major herbaceous crops as
a function of water consumption under rainfed, supplemental, deficit, and full irrigation conditions.
Similarly, the model has been widely used to assess water productivity (Mostafa et al., 2023);
(Shan et al., 2023). Additionally, some studies have proposed a combined method for estimating
the spatial and temporal variation of crop water productivity under deficit irrigation scenarios
based on the Aqua Crop model (Ahmadpour et al., 2022).
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2.2 Crop Water Productivity Estimation

The CWP estimation is achieved by the ratio of yield and actual evapotranspiration (ETa)
(Talpur et al., 2023; Yihun et al., 2013).

The phenological period, which refers to crop growth and development stages, is crucial in
estimating ET and crop yield (H. Gao et al., 2023). Factors such as crop coefficient (Kc) and
harvest index (HI), which vary during different phenological periods, are considered in estimating
ET and yield. Different crops have varying crop phenology, growing periods, quantity harvested,
and crop response to the environmental conditions that influence crop yield. The rate of water loss
from crops through transpiration (crop transpiration) is determined by taking the reference
evapotranspiration value (ETo) for a particular region and multiplying it by a crop coefficient
(KcTr) that is specific to the crop type. The crop coefficient adjusts the reference
evapotranspiration to account for differences between crops in transpiration rates under the same
environmental conditions. According to FAO, the crop coefficient is proportional to canopy cover
and varies throughout the life cycle of a crop. It is affected by water stress, which can affect canopy
development and induce stomata closure, directly affecting crop transpiration. A study by (H. Gao
et al., 2023) utilized the dry matter mass—harvest index, crop Kc, based on crop phenology to map

crop water productivity of maize.

The evapotranspiration (ET) formula estimates the amount of water crops use. The ET
formula considers temperature, humidity, wind speed, and solar radiation factors. The Penman-
Monteith equation is a widely used ET formula recommended by the United Nations Food and
Agriculture Organization (FAQO). The Penman-Monteith equation combines energy balance and
aerodynamic resistance equations and is considered the most accurate method for estimating ET.
(Wang et al., 2023; (Hassan et al., 2022) and employed the ET formula in the estimation of
evapotranspiration which is an important component of CWP estimation.

Several studies have been conducted using different methods and models to estimate the
crop water productivity of maize. A study in Mexico used locally developed crop coefficient
curves and United Nations Food and Agriculture Organization (FAQ) crop coefficients to estimate
maize water use and water productivity. One study proposed an ensemble approach for identifying
the virtual water content (VWC) of main crops on the Korean Peninsula in past and future climates.

The ensemble VWC is calculated using three types of crop yields and fifteen consumptive amounts
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of water use in the past and the future (Lim et al., 2017. Future projections predicted declining

yields for both crops, suggesting that these reductions could lessen future water demand.

CWP Estimation Methods

Estimation methods vary depending on the region and the crops being cultivated. They are
mainly grouped into field-based, modelling and simulation, and remote sensing and machine
learning methods. Every method has its advantages and disadvantages.

2.2.1 Surface Energy Balance Algorithm (SEBAL)

SEBAL has proven to be a valuable tool for water resource management, agricultural
planning, and environmental monitoring, providing reliable estimates of evapotranspiration and
surface energy fluxes over large areas. It has been widely adopted in various research and
operational applications worldwide because it can utilize freely available satellite data and provide
valuable information for water-scarce regions. The Surface Energy Balance Algorithm (SEBAL)
is a method used to estimate evapotranspiration (ET) using remote sensing and the energy balance
principle (Gibson et al., 2013). It was developed to analyze thermal infrared remote sensing data
from satellites like the Landsat series to monitor and manage water resources and agriculture
efficiently. Souza et al., 2023 carried out a study that estimated the evapotranspiration of irrigated
acai plants in eastern Amazonia using SEBAL. The results showed good agreement with the
Bowen ratio method, and SEBAL was useful for irrigation management and reducing water losses.
Similarly, (Gao et al., 2023; Kamyab et al., 2022; Bansouleh et al., 2015; PACHAC HUERTA &
CHAVARRI VELARDE, 2019) and more recently used this model in the estimation of
evapotranspiration proved to be more efficient. SEBAL is limited for accurate evapotranspiration
Estimation. SEBAL relies on spatial information, such as land surface temperature and vegetation
indices, which vary across different areas. This spatial dependence can introduce uncertainties in
the estimation of evapotranspiration. This is due to the reliance on anchor pixels. (Prakash Mohan
et al., 2020), Properly outline the limitation of anchor pixels. Another limitation of this Algorithm
is wind speed observation. SEBAL requires accurate wind speed data for calculating each pixel's
dry/wet endpoints. However, wind speed observations are known to have high temporal and spatial
variations and may not be routinely available, especially in heterogeneous areas. SEBAL is

sensitive to vegetation parameters, such as the Normalized Difference Vegetation Index (NDVI),
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which estimates the vegetation cover fraction. Inaccurate or incomplete vegetation information
can affect the accuracy of SEBAL estimates (Ruhoff et al., 2012).

Surface Energy Balance System (SEBS) is another remote sensing-based algorithm that
estimates evapotranspiration (ET) and surface energy fluxes from satellite data. It was developed
to overcome some limitations of the Surface Energy Balance Algorithm (SEBAL) and provide
more accurate and physically based estimates of surface energy fluxes and ET. Similar to SEBAL,
there are discrepancies in the reported accuracy of the SEBS model due to known model
sensitivities. Its performance may vary depending on the input data quality and the specific
characteristics of the study area. SEBS requires accurate vegetation parameters to be obtained,
especially in agricultural areas where accurate vegetation parameters can be obtained, high-
resolution imagery with low sensor zenith angles is available, and canopy cover is complete. This
requirement may limit the applicability of SEBS in areas where such data is not readily available
(Gibson et al., 2013).

2.2.2 Field-Based CWP Methods

Several field estimation methods can improve CWP, including lysimeter measurement,
nuclear techniques, modeling approaches, field observations, and genetic enhancement. Lysimeter
measurement and nuclear techniques have been used to improve water management, saving water
by reducing the loss of components the plants do not use and thus enhancing water productivity
(WP) (Abou Zakhem et al., 2019). These techniques involve measuring soil water content,
evaporation, and deep percolation to determine the amount of water plants use and the amount lost

to the environment. However, this method is limited to a small scale.

Shoukat et al. (2021) conducted a field study to estimate wheat crop water productivity
(CWP) under different irrigation and fertilizer regimes. Using a randomized block design with
three replications, they applied three irrigation treatments - full, 20% deficit, and 40% deficit
irrigation relative to the crop evapotranspiration (ETC) estimated by the CROPWAT model.
Additionally, three nitrogen fertilizer treatments were applied at different wheat growth stages. By
measuring the resulting wheat yields, yield components, nutrient utilization, and water use
efficiencies, they could estimate CWP under different management scenarios. A commonly used
field method for CWP estimation is the harvest method. The harvest method involves measuring

the crop yield and the amount of water used for irrigation, then calculating crop water productivity
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(CWP) as the yield-to-water use ratio. This method provides a direct measure of the productivity
of a crop in terms of water use efficiency. The method faces extent limitations, especially for large
spatial areas, and data availability, especially for the amount of water lost. Field-based methods
may only be equally applicable to some crop types as different crops have diverse water
requirements, growth patterns, and responses to water. In addition, CWP can change over time due
to climate variability, seasonal fluctuations, and other factors. Field-based methods might provide

only a snapshot of CWP for a specific period, limiting their ability to capture long-term trends.

2.2.3 Remote sensing and Machine learning Approaches

Remote sensing is a technique used to estimate crop water productivity by analyzing data
collected from a distance, such as satellite imagery. This method has become increasingly popular
in recent years due to its ability to support management, monitoring, and controlling activities at
different spatial and temporal scales (Dalla Marta et al., 2018). Remote sensing has revolutionized
monitoring and estimating crop water productivity (CWP) by providing valuable data on crop
health, water stress, and environmental conditions over large agricultural areas. With the ability to
gather information from satellites, drones, and other airborne platforms, remote sensing techniques
have become essential for sustainable water management in agriculture. (Li et al., 2008; Talpur et
al. 2023; Gao et al., 2023; Spiliotopoulos et al., 2023 and Darwish et al., 2023) Successfully

utilized remote sensing technologies to estimate crop water use and productivity.

Remote sensing indices are utilized to estimate crop water productivity. Commonly used
indices include NDVI (Mohanasundaram et al., 2023; Pandya et al., 2023; Farrell et al., 2018),
EVI (Jaafar & Ahmad, 2015; (Tang et al., 2015), NDWI (Singh et al., 2021; (Z. Wang et al., 2009)
and TVDI (Holzman & Rivas, 2016) and more. NDVI is one of the most widely used remote
sensing indices for assessing vegetation health. It quantifies the density of green vegetation and
indicates plant Vigor and growth. NDV1 values near +1 indicate healthy, thriving vegetation, while
values closer to -1 indicate stressed or sparse vegetation. Monitoring NDVI over time can infer
changes in crop water productivity. EVI is an improvement on NDVI, designed to reduce
atmospheric influences and improve sensitivity at high vegetation densities. It provides a more
accurate representation of vegetation conditions, making it suitable for areas with dense vegetation
cover or during periods of high atmospheric interference. TVDI combines thermal infrared data
with NDVI to assess water stress in crops. It uses the difference between the daytime land surface
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and potential temperatures under non-water-stressed conditions. TVDI is beneficial for monitoring

crop water status, especially in regions where water scarcity is a concern.

On the other hand, machine learning (ML) techniques have been increasingly employed in
the agricultural field to improve the accuracy and efficiency of crop water productivity estimation.
This technique has proven to be more efficient in crop yield prediction (Ashwitha & Latha, 2022),
water demand forecasting (Emami et al., 2022), remote sensing and Image analysis (Thapa et al.,
2023), drought monitoring and mitigation, precision Irrigation, and agriculture. Machine learning
techniques offer powerful tools to analyze complex datasets, predict crop water requirements, and

enhance water productivity in agriculture.

Despite They also have limitations despite using remote sensing and machine learning in
crop water productivity estimation. The limitation may be due to data availability and quality.
Remote sensing relies on data from satellites and other sensors, and the availability and quality of
this data can vary. Cloud cover, sensor malfunctions, and limited satellite revisit frequency can
lead to gaps in data, making it challenging to get consistent and timely information for accurate
estimations. Another limitation is spatial and temporal resolution. There may need to be more than
the spatial resolution of remote sensing data to capture small-scale variations within fields or
individual plants. Similarly, the temporal resolution may only sometimes be high enough to
capture rapid changes in crop water needs, especially in rapidly evolving weather conditions.
Finally, the complexity of the crop-water relationship poses a significant challenge in accurate
water productivity estimation. The relationship between crop water productivity and remote
sensing parameters is complex and influenced by various factors like crop type, stage of growth,

and weather conditions. Capturing these complex interactions in a single model can be challenging.
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3. Materials and methods

3.1 Study area

The Bura irrigation scheme is the study area located in Tana River County (1°11'39.1S,
39°50'23.0"E). The scheme is one of the largest and oldest irrigation projects in Kenya. It was
established in the 1978s and covers an area of about 12,000 acres gazette area and 10,000 acres
under irrigation (National Irrigation Authority, 2023). The primary water source is from River
Tana, which is 50 km away and maize is the main crop grown in the area. Other crops grown in

the area include green grams, cowpeas, cotton, watermelon, sugarcane, and onions.

Low and erratic rainfall patterns characterize the scheme. The average annual rainfall in
the region is relatively low, ranging from 200 to 600 millimeters (8 to 24 inches). This results in
an average of about 400mm of rainfall in the region (Muigai David et al., 2019). The rainfall is
highly variable, with the most precipitation occurring during the short rainy season from March to
May and a shorter second rainy season from October to December (Mbayaki, 2021). Drought
periods are standard, and rainfall distribution can vary significantly from year to year.

Due to the arid conditions, the Bura irrigation scheme's evapotranspiration rates are
relatively high. High temperatures and low humidity contribute to increased evapotranspiration
rates, which can impact water availability for crops.

Bura Irrigation Scheme- Study Area
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Figure 3. 1 Study area map — Bura Irrigation Scheme.
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3.2 Data

This research utilizes satellite imagery and ground-based data to analyze crop productivity.
Satellite data was acquired from the Google Earth Engine via its Python API for the five years

between 2018 and 2022, focusing on images from the crop growing seasons.

3 .2.1 Meteorological Data

The availability of consistent, long, and complete time series of meteorological data is
critical for estimating crop water requirements because weather is the most important input
variable for assessing crop evapotranspiration and determining soil water deficit. This study used
the ERAS daily Grided dataset accessible from the GEE catalog and the local meteorological
station dataset. ERAS is the fifth-generation ECMWEF reanalysis of the global climate and weather
data of the previous eight decades. Data has been accessible since 1940 (Copernicus, 2018). The
dataset contains essential atmospheric meteorological factors such as air temperature, pressure,
and wind at various altitudes, as well as surface parameters such as rainfall and sea parameters
such as sea-surface temperature and wave height. The daily homogenized, filtered, reviewed, and
pre-processed (outliers removed) data of minimum temperature (Tmin), maximum temperature
(Tmax), mean temperature (Tmean), Precipitation, incoming solar radiation, vapor pressure, and
wind speed (u -component at 10m high above the ground) were acquired from Google Earth
Engine (GEE) data catalog for a period of five years; between 2018 to 2022. In the case of vapor
pressure, the information may not be directly available in the ERA5 dataset. However, it was
estimated using atmospheric parameters such as air temperature and relative humidity, as

previously implemented by (Pelosi et al., 2022) on crop water requirement studies.

Similarly, daily weather data for the Garissa weather station was acquired from the Kenya
Meteorological Department on request. This was for the same period and was used as part of the
ground validation data and the actual ground yield data. More accurate data could be acquired at

the exact field level and in several locations, but this was limited in this study.

Optical Satellite Imagery Datasets

This research acquired several optical datasets from the GEE platform, including MODIS,
Landsat 8, and Sentinel 2 datasets. MODIS provided high temporal resolution data of up to daily
with an average 8-day temporal resolution. Three surface reflectance products were used for data
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fusion. In this case, MODO09A1.061 Terra Surface Reflectance 8-Day Global 500m product, USGS
Landsat 8 Level 2 Collection 2 Tier 1, and Sentinel-2 MSI Multispectral Instrument Level-2A
dataset were accessed from the GEE data catalog using Python API. Landsat 8 dataset has a spatial
resolution of 30m, and sentinel 2 has the B2 - B4 and B8 having a spatial resolution of 10m. To
achieve a harmonized resolution, resampling was performed on the datasets to achieve a 10m

spatial resolution. Table 3.1 below summarizes the data used in this study.

Table 3.0.1 Datasets used in this study

Data Description/Resolution Source

Temperature (Tmin, Tmax), | From ERA5_ L and Daily | ECMWF/
Incoming Solar radiation, | Dataset and

vapor pressure, Wind speed, KMD (Kenya Meteorological

Actual Meteorological Local

and Precipitation Station Data. Department)
Evapotranspiration (ET) 8-Days at 500m resolution MODIS

Surface reflectance (Derived | 10m - Fused dataset Sentinel 2, Landsat 8 OLI,
Dataset: NDVI, MSAVI, EVI, MODIS

etc.)
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3.3 Methodology Flowchart
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3.4 Data Fusion and Indices Calculation
3.4.1 Daily Imagery Dataset

The increased availability and diversity of global satellite products and new algorithms
have opened up enormous opportunities for creating new levels of data with varied geographical,
temporal, and spectral resolutions (Dhillon et al., 2023). MODIS has a short return interval, and
the data quality is consistent. However, because of the limited spatial resolution, it does not apply
to the small-scale region. Sentinel-2 and Landsat 8 data have a better spatial resolution of about
10m and 30m, the lowest value for some bands, than MODIS data, although the data quality is

unreliable

Implementing the fusion algorithm for the three datasets was based on a method
implemented by (H. Gao et al., 2023) by extending the formula used with one for Landsat.
However, several fusion algorithms do exist. An example is the improved spatial and temporal
data fusion approach (ISTDFA) used by (Wu et al., 2018) to fuse MODIS and Landsat. Another
algorithm used was STAIR 2.0 to fuse MODIS, Sentinel 2, and Landsat. Other commonly used
algorithms similar to the ones employed here are the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM) and two extended data fusion techniques, STAARCH and ESTARFM,
which have been utilized in prior studies to integrate MODIS and Landsat data (F. Gao et al.,
2015). In this study, the fusion algorithm used the formula below to obtain a daily 10 m resolution
dataset.
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(3)
Where:

Vy (t;) - Value of the fused image pixel at time ¢;

Vi (t;) - Value of the MODIS image pixel at a time t;

Vr (t;) - Value of the Sentinel-2 image pixel at time (t;)

V., (t,) - Value of the Landsat 8 image pixel at time ¢,

N - Number of Sentinel-2 images

M - Number of Landsat 8 images

t; - Day of Year (DOY) corresponding to the MODIS data.
tj - DOY corresponding to the Sentinel-2 data

ty - DOY corresponding to the Landsat 8 data.

o (t;, t; ) - Weight of the Sentinel-2 image at a time ¢;, t;

o (t;, t; ) - Weight of the Landsat 8 image at a time t;, t;,

K - The empirical coefficient accounts for the influence of missing Sentinel-2 and
Landsat 8 images on data fusion.

The fusion process involved data preprocessing, such as performing atmospheric
corrections on the Landsat 8 and Sentinel 2 images. Cloud masking and filtering were performed
to ensure that cloud-free photos were obtained for fusion. This methodology adopted a procedure
utilized by (Luo et al., 2020) in the actualization of the STAIR 2.0 algorithm. This involved cloud
removal, resembling the MODIS dataset from 500m to 30m spatial resolution, and fusing MODIS
with Landsat, as shown in equation (1) above. Similarly, atmospheric corrections, co-registration,
and cloud removal and filtering were performed on the Sentinel-2 dataset, fused with a resampled
10 m resolution MODIS-Landsat 8 dataset to 10 m resolution daily dataset collection between
2018 and 2022.

Figure 3.3 below shows a sample NDVI map comparing the output from the fused dataset
and coarse 500m resolution MODIS NDVI between January and December 2022. This helps
achieve high spatial and temporal resolution for the fused dataset, ensuring improved crop

monitoring and metric generation within the study area.
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Figure 3. 3 Comparison of Daily MODIS and fused dataset
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3.4.2 Indices

The study calculated several indices to support the analysis of CWP and machine learning

modeling. The indices are drought-based, vegetation-based, soil-based, and water-based. They

include NDVI, VCI, and more.

Table 3.2 below summarizes all the indices calculated and used in the study.

Table 3.2 Spectral indices, Expressions, and references

Indices Expression Use Case/ Reference
NDVI (NIR - Red) / (NIR + Red) (Dhau et al., 2021; Bolfe et al., 2023)
EVI 2.5* ((NIR -Red) / (NIR + 6 *Red - 7.5 * | (Dhau et al., 2021)

Blue + 1))
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GNDVI (NIR - Green) / (NIR + Green) (Dhau et al., 2021)

MSAVI (2*NIR+1-sgrt ((2*NIR+1)72-8* | (Dhauetal., 2021)
(NIR - Red))) /2

MNDWI | (Green- SWIR)/ (Green + SWIR) (Agilandeeswari et al., 2022;
Laonamsai et al., 2023)

EDI (PET - ET)/ PET (Khan et al., 2018)

VCI (NDVIi - NDVImin) / (NDVImax - | (Sanchezetal., 2016; Zhao et al., 2022)
NDVImin)

TCI (LSTmax - LSTi) / (LSTmax - LSTmin) | (Sanchez et al., 2016; Zhao et al., 2022)

SMCI (SMi - SMmin) / (SMmax - SMmin) (Sanchez et al., 2016; Zhao et al., 2022)

3.5 Crop Yield

Yield calculation in this study is achieved by determining total dry matter biomass and
harvest index. Harvest index is a critical agricultural term relating to crop plants' capacity to
convert photosynthetically fixed carbon into edible yield, frequently the crop's harvested
component such as grains, fruits, or vegetables. Combined product of harvest index and
summation of biomass results to yield estimate. In this case, the Biomass-Harvest index method is

used. The harvest index method is inherited from a study by (Moriondo et al., 2007).

NDVI
HI=  Hipge = Hlyange (1 - S0022T) (4)
Where:
HI - Actual Harvest index for C4 crop (maize/corn)

HI,, ., - Maximum harvest index for maize. In C4 crops have been chosen to be 60% (0.6)

Hlygnge - The range selected is 0.2 for C4 crops.
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NDVIposr- The mean value of NDVI between flowering and maturity

NDVIpgg- The mean value of NDVI between planting and flowering for maize crop.

Dry matter Biomass estimation utilizes NDVI values and solar radiation as major input
parameters. According to Bastiaanssen & Ali, 2003, Biomass can be estimated using the

following formula.
Biomass = X (0.864 x € x APAR) 5)
Where:

€ is the light use efficiency (LUE), and APAR is the 24-hour absorbed photosynthetically active
radiation (W /m?). APAR is given as shown;

APAR =0.48 x fx S| (6)

Where f refers to the APAR fraction which changes with respect to the leaf area index. Sl
Represents the incoming solar radiation. This component is obtained from weather data. The
value of 0.48 is an average or typical value that has been found to represent the efficiency of
plants in converting PAR into chemical energy through photosynthesis. It is also important to
note that the PAR value describes the total radiation available for photosynthesis assuming
leaves intercept all sunlight. This is a very speculative estimate since leaves both transmit and

reflect solar radiation.

Determination of the fraction of APAR (f) depends on vegetation indices of the crop at a
specific point in time. In this case, NDVI is specifically used as the main index in the calculation

of the fraction of APAR. Given by the expression;
f=-0.161 + 1.257 NDVI, (7

Another important component used in the determination of Biomass is the LUE. LUE
quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation.

Given by the expression;

€ = &maxX 9(T) x g(D) x 4 (8)
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Emax Tepresent the max value for C4 crops like corn/maize. A study determined &,,,,t0 be
approximately 2.5 gMJ~* (Huang et al., 2022). Similarly, g(D) accounts for vapour pressure,
and g(T) accounts for crop heat stress. Both g(T) and g(D) and scalar quantities. Finally, A
represents the water stress mainly obtained as an evaporative fraction. Utilizing results from

biomass and harvest index (HI), yield is then obtained by the following expression;
Yield (YY) = Biomass x HI 9)

3.6 Evapotranspiration Estimation

The estimation of actual ET utilizing the SEBAL algorithm parameters was achieved by
the following formular, which is based on thermal and multispectral remote sensing datasets that
compute latent heat flux (LE) as a residual by subtracting the soil heat flux and sensible heat flux
from the instantaneous surface energy balance equation's net radiation (Rn) (Gongalves et al.,
2022). In the computation of ET, both weather data and satellite images are used. LE is
expressed as shown in equation (10).

LE=Rn-G-H (10)

H is the instantaneous sensible heat flux (W /m?), and G is the soil heat flux (W /m?).
Furthermore, Rn and G are determined as follows;

Rn=(1-0a)Rs| +RI| -RI{-(1-e0)RI| (11)
— = a(Ty- 273.15) (0.0038a + 0.0074a%)( 1 - 0.98NDVI*) (12)

Where «a is the surface albedo calculated from satellite image bands according to (Tasumi
et al., 2008) that demonstrated this using Landsat image bands? Rs| represents the incoming
short-wave radiation, RI| is the incoming long wave radiation, RI1 the outgoing longwave
radiation,
and ¢o IS the surface thermal emissivity. According to (Jaafar & Ahmad, 2020), Ts, corr is
the corrected land surface temperature (Ts) in K based on the DEM map and the difference
between extraterrestrial solar radiation on sloping and flat terrains to account for temperature
variations owing to common elevation data and slope.

The automated statistical technique used to choose the hot and cold endmembers is a
reduced version of the CIMEC algorithm used in METRIC. Endmember candidates are chosen
based on percentiles of LST and normalized difference vegetation index (NDVI) readings. To
calibrate the dT function, the CIMEC process is employed. Surface temperature, wind speed,
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surface roughness, and surface-to-air temperature gradients are all used to determine sensible
heat flow (H).

paCpdT

H = (13)

Tah

Where Cp is the specific heat capacity and is the aerodynamic resistance of turbulent heat
transport from the evaporating surface at height z1 to the air above the evaporating surface z2, to
solve the iteration process, selecting hot and cold endmembers is necessary. In this case linear
relationship between T and (dT) is assumed; a and b coefficients are empirically determined for
each image.

dT =a+ b7y (14)
More details from a research paper done by Laipelt et al., 2021.

The evaporative fraction (A) is expressed as

A=—E ; (16)

Rn—-G

To obtain daily ET, the following expression is used within the SEBAL algorithm.

ARy
ETaz4n=—] - (16)

Where is the latent heat of vaporization (MJ-kg-1).

In addition, the maize crop coefficient was calculated utilizing the Penman-Monteith
equation (Wang et al., 2023) which FAO recommends. ETa is given by the expression;

ET, = ETy x K, 17)
ET, is the daily potential evapotranspiration and K, is the crop coefficient for maize at the
corresponding growth stage.

900
0.4084 (Rn—G) +vy W”w (es—eq)

ET, =
A+y (1 +0.34 U10)

(18)

Where A represent the slope of the saturation of water pressure curve, Ty,eqr 1S the mean of daily
air temperature at 10m height in degrees Celsius, u,, is the speed of wind at 10m height in
meters per second, e, represent the actual vapour pressure, and is the saturation vapour pressure.
The difference of and gives the saturation vapour pressure deficit. y is the psychrometric
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constant. G is as previously defined—more on the calculation of each component fellows
(Gebremedhin et al., 2022).

Crop coefficient (Kc) is a spatially and temporary variable depending on the crop type
and the growth stage. The determination of Kc values followed expressions documented by
(Cemek et al., 2023). Therefore, the combination of ETa and ETo is used to determine the
correlation between Kc and NDV1 within the study area. According to FAO, Kc values ranges
from 0.2 to 1.2 with the following periodic breakdown: initial stage, crop development stage,
mid-development stage, and late stage.

3.7 Crop Water Productivity

CWP then estimated using crop determined yield (Equation 9) and crop
evapotranspiration (Equation 16). Yield units are in kilograms per meter squared (kg/m?) and
evapotranspiration units are m3/m?. Water productivity maps were an output of dividing
agricultural yield production results (Figure 4.5 and 4.6) by water use results (ET results in
Figure 4.8 and Figure 4.9). The expression for CWP is as shown in equation 19.

CWP = (Yield (Y)) / (10 X ETamean) (19)

where ETamean IS the mean actual evapotranspiration over the growing period when the
estimation is performed

3.8 Machine Learning

3.8.1 Machine learning models used to estimate Yield, ETa,
and CWP
This section utilizes three machine learning models: Random Forest Regressor, Support

vector machine, and Extreme Gradient Boosting.

Random Forest (RF) leverages the power of multiple decision trees by training them on
diverse subsets of the training data through bootstrapping, ultimately creating a robust and
integrated learning algorithm (Elbeltagi et al., 2022). The outcome of Random Forest (RF)
approximations consists of the averages from each tree. As a result, RF can reduce variance and
achieve more accurate predictions compared to typical tree-based algorithms. Nonetheless, in
cases of predicting extreme observations, it can introduce bias. In particular, random forest

predictions tend to be overly optimistic when there are limited observations available. In this
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research, bias correction followed the RF bias correction flow applied by (Zhao et al., 2022). The
scikit-learn package (Pedregosa et al., 2011) was utilized to train Random Forest regressors

independently on each dataset.

Support Vector Regression (SVR) is a machine learning approach grounded in Vapnik-
Chervonenkis (VC) theory and the principle of structural risk minimization (SRM). SVM is the
machine learning algorithm that comes closest to deep learning. A two-layer neural network is
equivalent to a nonlinear SVM. A multi-layer neural network may be simulated by adding extra
kernel functions to nonlinear SVM (Mountrakis et al., 2011). SVR extends its applicability to
nonlinear regression tasks by utilizing kernel functions, which help transform input data into a
higher-dimensional feature space. SVR incorporates the concept of slack variables during
training, allowing the model to accommodate and tolerate specific errors. Including slack
variables enhances the model's capacity for generalization (Xu et al., 2023). In estimating ET,
Yield, and CWP, the non-linear radial basis function kernel function is used. This kernel function
performs better than other kernels for the SVM model. The optimal hypermeters are determined

where C for the kernel function is determined through trial and error.

Extreme Gradient Boosting (XGBoost) is a distributed gradient boosting library built to
be efficient, adaptable, and portable. It employs machine learning methods using the Gradient
Boosting framework. It utilizes a second-order Taylor expansion of the target function and the
second derivative to enhance the speed of model convergence during training. Furthermore, a
regularization component is incorporated into the target function to manage the complexity of
the tree, resulting in a more straightforward model and guarding against overfitting (Geng et al.,
2021). XGBoost introduces a novel sparsity-aware algorithm for handling sparse data and a
weighted quantile sketch for approximate tree learning. The sparsity-aware algorithm is designed
to efficiently handle sparse data, which is common in many real-world applications. It optimizes
the tree construction process by only considering non-zero values, reducing the computational
cost and memory usage. The weighted quantile sketch is a technique introduced in Xgboost to
handle weighted data. It allows Xgboost to find quantiles on weighted data, essential for accurate
tree learning. This technique is the first method to solve the problem of finding quantiles on

weighted data. In this study, some of the parameters of importance used for XGBoost include
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n_estimators, learning_rate, max_depth, subsample, and colsample_bytree. More information

about XGBoost can be found in the documentation.

3.8.2 Performance Metrics and Evaluation

Calculated ETa, CWP, and Yield data are hereby compared to the modeled data. This is
achieved through model performance evaluation. The dataset is split into 70% Training and 30%
validation. To cub model overfitting, the K-fold cross-validation method is employed. To
perform cross-validation (CV) in this study, the dataset was split into k subdivisions, explicitly
using a 5-fold CV. In each of the 5 iterations, the model was trained, and during each iteration, a
different fold was held out from the training set and used as the validation set. This approach
ensures that each fold has a turn at being the validation set while the model is trained multiple
times.

Model performance is assessed using mean absolute error (MAE) Equation (20),
coefficient of determination (R?) Equation (21), mean square error (MSE) Equation (22), and
root mean square error (RMSE) Equation (23) (Elbeltagi et al., 2022).

MAE = % 2?21 \yz - @z‘ (20)

Z?:l (y@ - ’fli)z

R*=1- =
> (yi — 9)? 21)
1 n
MSE = — (’y«; - ’gz’)2
n ; (22)
1 & )
RMSE = Q o Zl(’yz‘ —9;)?
i= (23)

Where n is the sum of all points used, y; is the observed calculated value of the respective
values of ETa, CWP, or Yield that are the target or response variables. Represent the modelled
values, and ¥ represents the mean value of the respective reference value of the target variables.
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4. Results

4.1 Crop Phenology

Study regarding crop growth stages is determined based on the cover characteristics
within the study area. Using the NDV1 and EVI, the analyzed average growth period and the
resultant curve show each stage's dates. Figure 4.1 and Figure 4.2 visually present the vegetation
growth characteristics for the specific day of the year. The continuous alignment of NDVI and
EVI curves throughout reveals their significant association, emphasizing their importance in crop
phenology assessment. This agreement highlights the durability and dependability of these

vegetative indicators, reaffirming their importance.

There are two main growth seasons: the long and the short growing seasons. The short
season ranges between DOY -220/270 and 355 (August/September to December). The long
season happens DOY-410 to 605 (late January to August). The dates agree with planting periods
as outlined in other studies within the study area (Muigai David et al., 2019). A 1 to 2-week
window is applied to these growth stages to ensure it captures the differences that may arise

within the Irrigation scheme.

The sowing period shows some discrepancy from what could happen in areas with
complete reliance on rainfed agriculture. The study area being an irrigation scheme, the sowing
period starts partially from zero NDVI or EVI index value as it could be in rainfed areas. This is
a contribution by factors such as crop rotation and continuous crop alternation within the crop
growth stages. This implies that both the sowing and maturity of maize crops happen
concurrently within the study between DOY — 345 (Maturity) and DOY — 405 (sowing).
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NDVI Crop Phenology
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4.2 Yield Estimation

4.2.1 Classification

The land cover classification, accomplished through Random Forest analysis,
successfully identified six distinct classes: bare land, tree cover, grassland, maize,
other crops, and water bodies. The classification results exhibit high accuracy,
enabling precise delineation and monitoring of land use patterns. Table 4.1 shows
the error matrix for classification using random forest for the year.

Table 4.1 Classification error matrix obtained from classification of land use and land cover of
Bura Irrigation Scheme using random forest, 2022

Reference
. Other Bare Row User’s
Grassland | Forest Maize Crop land Water Total | Accuracy
Grassland 0.188 0.009 0.153 0.162 0.012 0.017 0.542 35.60%
E Forest 0.024 83.243 1.546 0.044 0.175 0.035 | 83.496 | 97.40%
§ Maize 0.201 0.339 11.005 0.023 0.141 0 11.71 94.00%
% C():trl:)e;r 0.024 0.005 0.05 0.456 0.02 0.023 0.578 78.90%
O Bare land 0.001 0.089 0.149 0.113 0.568 0.001 0.92 61.70%
Water 0.021 0.072 0.023 0.014 0.031 3.980 2.354 95.35%
Column Overall Accuracy:
Total 0.459 83.653 11.82 0.902 0.942 4.056 95.8%%
Producer’s | 1 oho0 | 97,400 | 84.57% | 57.43% | 60.26% | 95.120% | [aPPa:
Accuracy 0.916

Cropland delineation is achieved through classification with the primary goal of using the
maize cropland for masking other layers of land pattern. The supervised classification using
random forest performed well in mapping tree cover, maize, and water. The three classes have an

accuracy of above 85, both user and producer accuracy.

This classification was applied every year between 2018 and 2022 to determine cropland

patterns in the study area. Figure 4.3 below shows the classification map for the year 2022.
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Surpervised Classification - Random Forest
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Figure 4. 3 Land Use Land Cover map
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4.2.2 Vegetation distribution

Vegetation Cover Between 2018 to 2022 (NDVI)
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Figure 4. 4 Visualization of vegetation cover throughout the study period (2018 - 2022).

The Normalized Difference Vegetation Index (NDVI) maps in Figure 4.4 above were
generated for both short and long growing periods and combined periods over four years (2018,
2019, 2021, and 2022) as part of this study on crop water productivity estimation for resilient
agriculture. NDVI is calculated from remote sensing reflectance data and indicates vegetation
greenness and health.

The NDVI maps allow for spatial and temporal analysis of vegetation conditions.
Comparing NDVI values across the different growing periods and years provides insights into
crop productivity and crop water use efficiency. Higher NDVI values generally indicate
healthier, greener vegetation and higher photosynthetic activity. Lower NDVI values may
indicate water stress, poor fertility, or other factors limiting plant growth.

The NDVI values vary between the short and long growing periods each year due to
differences in crop phenology and water availability. During short growing periods, crops may
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not reach full canopy cover before the end of the season, resulting in lower overall NDVI. In
long growing periods, crops have more time to mature and develop dense, green canopies,
leading to higher NDVI values. Finally, the combined season provides a preview of all the

season's images merged into one.

4.2.3 Seasonal Yield Distribution

Short Season Yield Distribution (Kg/ha)
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Figure 4. 5a Spatial Temporal Yield distribution during the short period between 2018 to
2022.
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Long Season Yield Distribution (Kg/ha)
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Figure 4. 6 Spatial Temporal Yield distribution during the long growing period between 2018 to

2022.

The crop yield mapping from 2018-2022 revealed clear spatial and temporal patterns in

crop production across the Bura Irrigation Scheme. The yield estimates were derived by
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combining remotely sensed NDVI data with a light-use efficiency model and APAR to estimate

biomass, which was converted to yield using a crop-specific harvest index (HI).

For the short growing seasons, yield ranges showed high variability, with minimum
yields as low as 457 kg/ha in 2021 and maximum maize yields up to 9178 kg/ha in 2018 (Fig.
4.4a). The lowest yields tended to be concentrated in the northern and southern parts of the
scheme, and the 2019 season had the highest overall yields, while 2021 had the poorest yields,

likely due to weather fluctuations.

The long growing seasons showed less variability, with minimum yields between 429-
671 kg/ha and maximum yields of 5586-7630 kg/ha (Fig. 4.4b). The lowest yields occurred
primarily in the southern areas of the scheme. The highest yields were found in the northeast

region. Overall, the long-season yields were higher and more stable than the short seasons.

The maps reveal substantial spatial heterogeneity in crop yields, highlighting low-crop
water productivity areas. While irrigation supports cropping in this ASAL region, water
distribution, and drainage issues may limit yields in certain scheme parts. The temporal
variability highlights the impacts of changing weather patterns and differences in cropping

patterns and management.

In addition to the spatial yield maps, average crop yield was calculated for the entire Bura
Irrigation Scheme region for each growing season and year. For the short seasons, the average
yield ranged from 3.12 t/ha in 2022 to 5.05 t/ha in 2020 (Table 4.1) below. The long-season
average regional yields were lower, varying from 3.22 t/ha in 2022 to 3.76 t/ha in 2019. The
combined average yield for both seasons fluctuated between 6.34 t/ha in 2022 and 8.68 t/ha in
2020. The combined yield was obtained as a sum of all the season’s yields in that year. A bar
graph was generated for the same results to visualize the trend of yield production at the regional

level within the Bura scheme (Figure 4.7) below.
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Bura Scheme Maize Yield Estimates
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Figure 4. 7 Yearly maize yield regional based average.

Table 4. 1 Yield zonal statistics at season level and on yearly basis

Short Season Long Season Combined Season Yield
Year Yield(t/ha) Yield(t/ha) (t/ha)
2018 4.776366357 3.271972696 8.048339053
2019 3.207342922 3.7555 6.962842922
2020 5.052628943 3.626553298 8.679182241
2021 3.215566055 3.336088949 6.551655004
2022 3.121359342 3.222519736 6.343879078

4.3 Regional Evapotranspiration Estimates

Evapotranspiration (ET) was estimated for the Bura Irrigation Scheme study area from
2018 to 2022 using the SEBAL algorithm and Penman-Monteith equation. During the short
growing season (Figure 4.8), ET ranged from a minimum of 9.3 mm to a maximum of 117.0 mm
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in 2018, averaging 63.2 mm across the study period. In 2019, the range was wider, from 24 mm

to 143.5 mm, with an average of 80.8 mm. The minimum ET stayed consistent in 2021 and 2022
at 9.3 mm, while maximum values were 119.0 mm and 112.0 mm, respectively. Average ET for
2021 was 64.2 mm, and 61.0 mm for 2022.

For the long growing season (Figure 4.9), the minimum ET was 9.3 mm from 2018 to
2022. Maximum ET reached 118.0 mm in 2018, 76.1 mm in 2019, 114.5 mm in 2021, and 143.9
mm in 2022. The average ET for the long season was 73.3 mm in 2018, 42.7 mm in 2019, 62.4
mm in 2021, and 78.6 mm in 2022. Overall, ET was lower and had a narrower range during the

short growing season compared to the long season.

The year with the highest ET estimates in the short season was 2019, with an average
of 80.8 mm and a maximum of 143.5 mm. For the long season, 2022 had the highest ET, with an
average of 78.6 mm and a maximum of 143.9 mm. The lowest ET for both seasons occurred in
2019, with an average of 42.7 mm in the long season.

Higher ET in a particular season and year indicates increased crop water use and
demand. Years with higher ET likely experienced better-growing conditions, less water stress,
and higher potential crop yields. Lower ET suggests crops were more water-limited, leading to
reduced productivity. For example, the high ET in 2019's short season means crops had adequate

moisture, while the low ET in the long season indicates water stress

ET estimates from the two models were relatively consistent, indicating reliable results.
Some variability between years can be attributed to changing weather patterns influencing
factors like rainfall, temperature, and wind speed, which affect ET. These ET maps and estimates
provide insights into crop water use in the Bura Irrigation Scheme over time. The data can help

inform water management and agricultural decisions to optimize crop productivity.

Figures 4.8 and 4.9 below show ET's spatial variability across the scheme.
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Short Season Actual ET Distribution
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Figure 4. 8: Short season spatial temporal distribution of Evapotranspiration
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Long Season Actual ET Distribution

2019

Legend
l:l Croplands
ETa (mm)

- 9.33-40.27
- 40.28 - 63.04 % s 5
I:I 63.05-755 W@@ o

I 7551-88.82
| EERRIERS

Legend
|:| Croplands
ETa (mm)
B o33-1003 :
[ J1904-318 {3 ;
[ J3te7-4312 ‘%;‘
[ 43.13-54.38

B - 007612

L d
Legend Legend

|:| Croplands I:l Croplands

ETa (mm) ETa (mm)

B o33-34.00 B o33-2517

[ 341-5554 [ ]2s18-5157 *-:& 3
[ |s555-69.97 [ |stse-7427 0
[ 69.98-85.24 [ 7428-96.45

B 525 - 11453 B s5.46- 14397

4.4 CWP Spatial Distribution

CWP maps are an output based on ET and yield. It was achieved using Equation 19. The

exact timeframe and seasons were processed, and the spatial-temporal distribution of CWP maps
was generated. High values of CWP represent higher productivity, while lower values represent
lower productivity. Figures 4.8 and 4.9 below show the spatial distribution of CWP between

2018 and 2022 for short and long growing seasons.
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In a short growing season, CWP ranges between a minimum value of 0 kg/m3 and 10.5
kg/m3 for the given timeframe. Generally, the southern part of the scheme has low crop water
productivity. The central part of the study area has a higher CWP, which is the main part where
irrigation happens. On the other hand, the long-growing season CWP was found to range
between 0 kg/m3 to 9.5 kg/m3. Spatially, CWP was lower in 2022 in most parts of the study area
for both seasons. Similar observations can be made in the 2021 long season and 2019 short
growing season. These low CWP results for the seasons contribute to high ET with low yields in

the maize-growing regions.
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The crop water productivity maps reveal several important spatial and temporal patterns
across the Bura Irrigation Scheme. While the southern areas consistently showed lower CWP,
the central and north-western irrigated zones displayed higher productivity that aligned with the
intensive agricultural activity in this region. The maps indicate that water management and
agronomic practices may need re-evaluation in the southern scheme to improve CWP. See Figure
4.10 above and 4.11 below.
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Short Season CWP and Maize Yields
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Figure 4. 9: Trend analysis of the changes between yield and CWP for the whole period of
study.

4.5 CWP, Yield and ET Trend View

In addition to the spatial maps, zonal statistics were calculated for each season and year
to quantify crop water productivity (Table 4.2). The reference evapotranspiration (ETO), actual
evapotranspiration (ETa), ETa standard deviation, yield, and CWP were summarized. This

provides the temporal variability in critical water use and productivity metrics.

CWP showed differences between the short and long growing seasons. In the short
season, CWP ranged from 3.23 kg/m3 in 2019 to 6.73 kg/m3 in 2018. For the long season, CWP
was lower, varying between 4.21 kg/m3 in 2018 to 5.88 kg/m3 in 2022. Yield also fluctuated
year-to-year, with the lowest values in the 2019 short season (3.21 t/ha) and the 2021 long season
(3.34 t/ha).

Line graphs and bar plots were created to analyze further the relationships between water
use, yield, and CWP. Figure 4.13 shows the connected trends in CWP and yield over time for
both seasons. CWP and yields decreased in the 2019 and 2021 short seasons compared to 2018

while remaining more stable in the long season.

- 51 -



Meanwhile, Figures 4.13 and 4.14 illustrate the comparative bars of CWP, yield, and ETa
standard deviation by season. The highest CWP and yields aligned with lower ETa variability in
the 2018 short season and 2022 long season. ETa deviation was more significant in years with
reduced productivity.

Overall, the temporal graphs coupled with the spatial CWP maps provide insights into the
factors influencing crop water productivity over the study period. The statistics and

visualizations can guide water and yield optimization.
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Figure 4. 10: Multivariable comparison and trend analysis of CWP, Yield and Evapotranspiration
during the short growing season.
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Figure 4. 11: Multivariable comparison and trend analysis of CWP, Yield and Evapotranspiration
during the long season.

Table 4.2 Regional Zonal statistics for CWP, Eta, ETo, and Yield were obtained yearly and
seasonal.

Short Season Statistics
ETO Eta stdETa Yield(t/ha) CWP
2018 | 237.0842 | 69.47594 14.12928 | 4.776366357 6.730136
. 2019 | 258.0159 96.215 9.227823 | 3.207342922 3.233628
E 2020 | 237.2859 | 76.05709 8.942988 | 5.052628943 6.515204
2021 | 261.6644 | 79.7649 9.837985 | 3.215566055 3.960766
2022 | 249.1607 | 58.34623 26.39416 | 3.121359342 5.406843
Long Season Statistics
ETO Eta stdETa Yield(t/ha) CWP
2018 | 215.4942 | 75.8447 14.69787 | 3.271972696 4.213657
o 2019 | 227.6036 72.08 14.28246 3.7555 5.21018
;_3 2020 | 243.2024 | 67.29996 19.00252 | 3.626553298 5.372413
2021 | 249.0766 | 61.38575 18.32356 | 3.336088949 5.443546
2022 | 252.2586 | 57.67675 33.46675 | 3.222519736 5.881332

- 53 -




4.6 Relative Importance of CWP Estimation Parameters

A correlation matrix was generated to examine the relationships between the vegetation
indices, remote sensing metrics, and the target variables of crop water productivity (CWP),

evapotranspiration (ET), and yield, whose results are as in Figure 4.15 below.

The vegetation indices of EVI, GNDVI, and SAVI showed strong positive correlations
with each other, with coefficients ranging from 0.83 to 1.0. These three indices also
demonstrated positive correlations with the target variables, with GNDVI having the strongest
correlations of 0.19 with yield, 0.07 with CWP, and 0.05 with ET.

The remote sensing metrics of SR, EDI, TCI, and albedo had strong inter-correlations,
with coefficients from 0.48 to 0.79. EDI and TCI showed the highest correlations with yield at
0.27 and 0.29, respectively. Albedo and land surface temperature (LST) were most strongly
correlated with CWP at -0.64 and -0.49.
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Figure 4. 12: Results of the Correlation analysis for the variables used in the machine learning
modelling.
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An XGBoost model was developed to predict crop water productivity (CWP), yield, and
actual evapotranspiration (ETa). The model's performance was evaluated using the metrics of
mean absolute error (MAE), R-squared (R2), root mean squared error (RMSE), and mean
squared error (MSE).

For CWP, the model achieved an R2 of 0.79, indicating that the model explains 79% of
the variability in the actual CWP values. The RMSE and MSE were 0.58 and 0.34, respectively,
showing the errors in predicting CWP. The model performed very well for yield prediction, with
an R2 of 0.88, a low RMSE of 0.45, and an MSE of 0.20. This demonstrates the model's strong
ability to predict crop yield. For ETa, the model had an R2 of 0.91, so over 90% of the ETa
variation is explained. However, the errors were higher than CWP and yield, with RMSE of 7.27
and MSE of 52.87. So, while still good, the model's predictions of ETa were less accurate than

for the other targets.

Overall, the XGBoost model strongly predicted CWP, yield, and ETa from the given
data. The highest accuracy was achieved for yield, followed by ETa and CWP. These evaluation
metrics quantify the model's ability to generalize and accurately estimate the target variables for

this crop system.

The trained XGBoost model was used to generate predictions for crop water productivity
(CWP), yield, and actual evapotranspiration (ETa) across the Bura Irrigation Scheme. Statistical
summaries were calculated on the predictions and compared to the summaries of the actual field
data. The model predictions had a mean of 6.12, close to the actual mean of 5.85 for CWP. The

standard deviation of the predictions was 0.92 compared to 0.88 for the actual data.

The predicted yield had a mean of 3.14 and a standard deviation 1.55. The actual yield
statistics were a mean of 3.10 and a standard deviation of 1.41. So, the yield predictions aligned
well with the actual yield distribution. ETa prediction, on the other hand, showed the most
prominent difference from the field data. The predicted ETa mean was 56.29, and the standard
deviation was 32.92. However, the actual ETa mean was 56.92, with a standard devia