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Abstract 

Crop production is highly affected by water scarcity, which has a negative impact on 

food security. Crop Water Productivity (CWP), defined as crop yield per cubic meter of water 

consumption, enhances agricultural production, especially in irrigation-based farming. Therefore, 

CWP has been recognized as a critical performance-based evaluation indicator for resilient 

agriculture. Although the estimation of CWP has been achieved in previous studies, using 

ground-based methods, coarse spatial and temporal resolution-based imagery, statistical 

methods, and limited application of machine and deep learning calls for further analysis. This 

study aimed to: i) estimate maize yield and determine evapotranspiration (ET) values based on 

analyzed maize crop phenological period in Bura Irrigation Scheme; ii) estimate maize crop 

water productivity and analyze the spatial distribution of CWP; iii) develop machine learning 

models for the estimation of CWP for maize crops and use the machine learning models for 

CWP estimation in the study area. 

The methods involve Data fusion (MODIS, Landsat, and Sentinel-2) to obtain daily high 

spatial resolution datasets, estimation of Evapotranspiration (ET) using the SEBAL algorithm 

and Penman-Monteith (P-M) equation, the estimation of yield by Biomass-Harvest index method 

and CWP as the ratio of yield and ET. In addition, the XGBoost model was developed to 

improve the estimation of CWP. The results from statistical and machine learning-based 

estimations were temporally and spatially consistent across the Bura Irrigation scheme (Tana 

River County, Kenya). Yield averaged 3.3 t/ha, below the global average of 4.9 t/h. On the other 

hand, the ET averaged 56mm, and CWP averaged 5.1 kg/m3 during the maize growing seasons, 

indicating overage productivity. Spatially, the productivity within Bura Irrigation was higher in 

the central and northern regions than in the southern regions throughout the study period. The 

XGBoost model successfully estimated CWP, Yield, and ET using imagery bands and 

specifically calculated indices. The model achieved an accuracy R2 > 75% for the target variable, 

where ET had the highest (91%) learning and prediction rate. The machine learning (ML) 

estimate of CWP was 5.8, close to the statistical average. Finally, these results show the need to 

use CWP and ML estimation methods to enhance agricultural resilience, resulting in increased 

food security.  
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Introduction  

1.1 Background 

Agriculture is the backbone of many economies, providing food and livelihoods for 

millions of people worldwide. However, increasing demand for food coupled with the effects of 

climate change has strained water resources, leading to water scarcity in many regions. Water 

scarcity refers to the limited availability of freshwater resources to meet the demands of various 

sectors, including agriculture. This significant challenge affects agricultural production and food 

security in many regions of the world (Booker & Trees, 2020).  Agriculture depends entirely on 

water, which can be both rainfed or irrigated.   Estimation of water used and yield produced is 

therefore necessary. This is enhanced through crop water productivity. 

Crop water productivity (CWP) is generally defined as crop yield per cubic meter of water 

consumption or the ratio of yields to evapotranspiration during the growing season (H. Gao et al., 

2023; Hellegers et al., 2009). Crop water productivity estimation is a crucial aspect of precision 

agriculture, which aims to optimize agronomic inputs like water, pesticides, and fertilizers to meet 

the growing demand for food while minimizing the use of natural resources like land and fresh 

water. The productivity of crops can vary depending on whether they are grown in rain-fed or 

irrigated agriculture systems. 

Irrigated agriculture accounts for an estimated 70% of total freshwater withdrawals 

worldwide, and in many drier countries, agricultural water use accounts for more than 90% of total 

withdrawals (Scheierling & Tréguer, 2018). As water becomes increasingly scarce, the 

management of agricultural irrigation moves to the center of water management concerns. Without 

advances in management and more integrated policy-making in developed and developing 

countries, water scarcity and related water problems will significantly worsen over the next several 

decades. The transition from an expansionary to a maturing water economy has led to the need for 

more efficient water use in agriculture. The concept of water productivity, which denotes the 

relationship between marketable yield and the seasonal water use by the plant through 

evapotranspiration, is an important indicator to express the resource use efficiency and can provide 

an assessment of crop performance under different irrigation strategies (Hommadi & Almasraf, 

2019). Rain-fed agriculture, on the other hand, is characterized by low average yields compared 
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 to irrigated agriculture, as rainfall rarely meets the time with the required amount of water 

application for plant growth. The performance of rain-fed productivity remains low and stable for 

most crops, and crop production is undulating under rain-fed agriculture. In many countries, rain-

fed areas are the critical cultivation areas with the largest concentration of rural poverty spanning 

several agroecological regions. The low efficiency of water uses and management in agriculture is 

a significant challenge, and one of the contributing factors to low crop productivity and balance is 

drought. 

Estimations of CWP are affected by drought conditions. Therefore, understanding the 

climatic conditions of the region of interest is paramount for such studies.  According to (Sarshad 

et al., 2021), drought is the most significant environmental stress in arid and semiarid regions, 

which has restricted agricultural development.  Those agricultural activities that have to survive in 

such areas are exposed to extreme temperatures, variations in rainfall, long solar radiation hours, 

and so on. Kenya is particularly vulnerable to drought due to its geography and climate.   Several 

droughts are common in agricultural lands in Kenya and most tropical regions. The different types 

of droughts, their severity, and their impacts depend on various factors, such as the duration, 

intensity, and spatial extent of the drought event. Meteorological drought is the most common type 

of drought, which occurs when there is a prolonged period of below-average precipitation. 

Agricultural drought refers to the impact of meteorological drought on crop production. In contrast, 

hydrological drought is characterized by low water availability in rivers, lakes, and groundwater 

as drought impact on agriculture influences crop evapotranspiration (ET) and general yield 

obtained, hence the need to look into how to manage available water resources for maximum 

production in drought conditions. This brings us to why CWP has established itself as a recognized 

indicator for evaluating progress toward SDG 6.4, which calls for much greater water usage 

efficiency (Blatchford et al., 2018; Ghorbanpour et al., 2022). 

The level of CWP estimation varies with scale, including at the farm and regional levels.  

Several factors, including data and the extent of the study area, influence such estimation's 

robustness. Farm-level estimation is challenging and limited in one way, considering the high 

volume of estimation data required when performing time series estimation. Traditionally, CWP 

has relied on labor-intensive and time-consuming field-based methods, such as lysimeters and soil 

moisture sensors. These methods are often limited in spatial coverage and cannot provide real-
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time data for large-scale agricultural areas. Moreover, they may not account for spatial variations 

in soil moisture and crop water requirements within a field. This has given way to remote sensing 

for crop water productivity estimations. Remote sensing can help estimate actual 

evapotranspiration (ET) and crop yield, which are important factors in CWP estimation 

(Ghorbanpour et al., 2022; Gao et al., 2023). This is important for improving regional agricultural 

water use efficiency and conservation levels.  Finally, remote sensing coupled with machine 

learning has increased in many fields, including agriculture and water use efficiency estimation.  

Machine learning is becoming an increasingly popular tool for estimating crop water 

productivity.  Existing machine learning methods continue to prove to be more reliable through 

data fusion and the combination of several models (Elbeltagi et al., 2022). On remote sensing data 

for farming, many machine learning algorithms have been applied, including random forests (RFs), 

support vector machines (SVMs), artificial neural networks (ANNs), genetic algorithms (GAs), 

and ensemble learning (Virnodkar et al., 2020; Sadri et al., 2022). Particularly in geographic 

classification and remote sensing data prediction, RF applications have gained popularity for 

resolving data overfitting (Sadri et al., 2022; Vergopolan et al., 2021; Saini & Ghosh, 2018). 

Although machine learning has been used in many fields, such as yield estimation (Islam et al., 

2023), weather forecasting (Patel et al., 2021), and remote sensing, it is underutilized in crop water 

productivity estimation. The variation is from the global level to the country and local level. 

Therefore, this study focuses on CWP estimation at the local level and specifically in irrigation 

schemes in the eastern part of Kenya - Bura Tana River Scheme.  

The Bura Irrigation Scheme covers a total area of 5,360 hectares, although only 3,340 

hectares are now used for irrigation due to a lack of water resources. Still, there is potential to 

enhance water availability, allowing irrigation of more significant areas and increasing maize 

output, which is now low. The plan now yields 3.5 tons per hectare of commercial maize and 4.4 

tons per hectare of seed maize. (Muigai David et al., 2019). This is less than the 4.9 t ha-1 average 

for the entire world value. Therefore, accurate water management in this area is essential, and 

proper estimates of how water is used and yield produced will be necessary. Using machine 

learning coupled with remote sensing will allow proper mitigation measures to be applied. 

Therefore, CWP estimation is necessary to boost production while withstanding drought 

conditions and help reduce the growing water scarcity.  
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1.2 Statement of the Problem 

One of the significant challenges in agricultural systems, particularly in irrigation schemes 

in Kenya, is the limited availability of water resources. Water scarcity continues to increase due to 

the impact of climate change. According to the UN's 2022 report, over 85% of the wetlands on our 

planet have been lost for over 300 years. The water crisis problem has been worsened by factors 

such as water contamination, population increase, urbanization, and inadequate management of 

water resources. Therefore, food security is going to be impacted by water shortage (Mulwa et al., 

2021). On the other hand, drought continues to rage in Kenya, resulting in reduced agricultural 

land and affecting agricultural production, especially in the supply of water for production. 

The physiological and biochemical processes of plants are predicted to be affected by soil 

water stress, which is a significant barrier to agricultural production, particularly in arid and semi-

arid lands (ASALs) (M. N. et al., 2015); Mbayaki, 2021). By managing crops and water poorly, 

plant quality and yields may be harmed (Fan et al., 2012; Mbayaki, 2021). 

Accurate estimation of CWP requires comprehensive data on crop growth, soil moisture, 

and water availability. However, obtaining such data is challenging and often needs to be improved 

in the Bura Irrigation Scheme. Existing water productivity methods are limited, and the data used 

significantly contributes to this effect. Bura Irrigation scheme, being among the largest in Kenya, 

has faced low records of yield production, as outlined in a paper by (Muigai et al., 2019).  The 

scheme relies on water from river Tana, which is 50 km away. Over recent years, the river Tana's 

water level has been reducing due to drought effects upstream. This impacts the downstream water 

supply for agricultural purposes, including the Bura Irrigation scheme. Optimizing water use 

efficiency in such scenarios is crucial for sustainable and resilient agriculture. However, 

conventional irrigation practices often result in inefficient water use and lower crop productivity. 

There is a need to address this problem by developing methods to estimate and improve crop water 

productivity by utilizing remote sensing (RS) and machine learning techniques. Effective water 

management strategies can be devised to enhance agricultural productivity while conserving water 

resources by accurately assessing water requirements and usage patterns. 

Water scarcity continues to rage in arid and semi-arid lands due to drought.  Bura Irrigation 

scheme, within agro-ecological zone V (semi-arid to arid), obtains its water from the Tana River, 

which is 50 km away, by pumping water from the river (National Irrigation Authority, 2023). In 
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addition, the area experiences low rainfall of about 400mm. High Temperatures are experienced 

all year round with slight seasonal variation. Mean maximum temperatures never fall below 31°C, 

and average minimum temperatures are above 20°C. All these factors make the agricultural area 

more vulnerable and costly, especially in the case of water pumping to meet crop water needs in 

the area. Water Crop water productivity is a crucial requirement for increased agricultural 

production because crop water is needed to substitute for water loss by transpiration and soil 

evaporation (Mbayaki, 2021) 

Over the recent years, food insecurity has affected many parts of Kenya, with Eastern and 

Northern regions being highly affected. According to the Integrated Food Security Phase 

Classification (IPC), in 2023, an estimated 4.4 million people in ASALs will face acute food 

insecurity. Generally, acute food insecurity has affected around 37% of the population in Kenya 

between 2022 and 2023 and is expected to increase.  Food insecurity continues to rise with 

increasing agricultural drought events, rapid population growth, water pollution reducing water 

use for agricultural purposes, and high demand that strains available water resources. In addition, 

Kenya declared In September 2021 the East African state of Kenya drought emergency. The 

affected drought areas (ASALs) continually received low rainfall for the season between 

November and December (International Committee of the Red Cross, 2022), leading to low 

agricultural production.  With all these drought events, agricultural production can be optimized 

to survive water scarcity and boost productivity by managing available water resources. CWP 

serves as the best alternative for the estimation of crop productivity in existing irrigation schemes 

and may serve as a near real-time decision-making tool on water management to increase 

agricultural production, hence increasing food security.  

 

1.3 Justification 

Accurately estimating and optimizing crop water productivity (CWP) is crucial for 

agriculture resilience under water scarcity and drought conditions. This is especially important 

for farming regions like Kenya's arid and semi-arid lands (ASALs), which face chronic water 

deficit challenges (Booker & Trees, 2020; Sarshad et al., 2021). One such region is the Bura 

Irrigation Scheme in Tana River County. However, river flows have declined with increasing 
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drought severity and rainfall variability (Mulwa et al., 2021), threatening irrigation availability 

downstream and requiring improved water use efficiency. 

This research addresses the urgent need for enhanced food security amidst increasing 

aridity in Bura and other ASAL croplands (Integrated Food Security Phase Classification, 2023; 

International Committee of the Red Cross, 2022). Insights into spatiotemporal CWP patterns can 

bolster resilience by targeting interventions like deficit irrigation (Shoukat et al., 2021), drainage 

upgrades, or alternative agronomic practices to raise productivity in struggling zones first (Jaafar 

& Ahmad, 2020;). If successful, the procedures could be expanded to additional Kenyan 

irrigation districts challenged by drought and irregular river flows (Mulwa et al., 2021). 

Strategically stretching limited water supplies, remote sensing, and machine intelligence 

(Elbeltagi et al., 2022; Khan et al., 2018) may help shield vulnerable breadbasket areas. 

1.4 Research Identification and Objectives 

1.4.1 Research Objectives 

The main objective was to estimate crop water productivity using remote sensing and machine 

learning techniques from 2018 to 2022 in the Bura irrigation scheme to support irrigation 

management and improve agricultural resilience. Specific objectives   include:  

❖ To estimate maize yield and determine evapotranspiration (ET) values based on analyzed 

maize crop phenological period in the study area, 

❖ To estimate maize crop water productivity and analyze the spatial distribution of CWP, 

❖ To develop machine learning models estimating crop water productivity (CWP) for maize 

crops and use the machine learning models for CWP estimation in the study area. 

1.4.2 Research Questions 

The following questions are formulated for this specific study. 

- How do water scarcity and drought adversely affect crop productivity within the Bura 

Irrigation Scheme? 

- In what ways can machine learning be effectively employed to enhance Crop Water 

Productivity (CWP) modeling, and what are the current levels of utilization of this 

emerging tool in addressing water-related challenges in agricultural settings? 
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- What specific factors contribute to the low crop water productivity and frequent 

droughts in Kenya's Arid and Semi-Arid Lands (ASALs), particularly in agricultural 

regions, and how do these factors contribute to food insecurity? 

1.5 Study outline 

This research study is divided into 6 chapters, whereby the first chapter introduces. 

The study details the background, statement of the problem, justification of the problem, and 

objectives. Chapter 2 contains the reviewed literature related to this topic. Further, Chapter 3 shows 

the data and methods used in the study, with Chapter 4 highlighting the results of the findings from 

the methods. Chapter 5 discusses the findings, and Chapter 6 concludes and recommends future 

research that might not be addressed at this level of geoscientific exploration and expertise 

 

  



 

- 17 - 

 

2. Literature review 

2.1 Water Use and Water Productivity 

Crop water productivity (CWP) is an important concept in agronomy that seeks to 

maximize viable yields per unit of water used in rain-fed and irrigated agricultural operations. 

CWP may be accomplished by increasing crop marketable yields per unit of transpired water and 

decreasing water loss from the soil water balance (Mbayaki, 2021). Water use and efficiency refer 

to CWP and are frequently used synonymously. 

Crop water productivity (CWP) is essential in irrigated agriculture for food and the 

environment's security, especially when water becomes limited. (Bekchanov et al., 2012). 

Estimates have already been made using crop models in previous research. Crop modeling is an 

effective method for calculating WP and is important in water management. (Soomro et al., 2019).  

Commonly used crop models for maize include CERES-Maize (Crop Environment Resource 

Synthesis), SWAT, SWAP (Soil Water Atmosphere Plant), AQUACROP, CROPWAT, and more. 

The CERES-Maize model (Cuculeanu et al., 2002) is specifically designed to simulate the growth, 

development, and yield of maize (corn) crops under different agroclimatic and management 

conditions. It has been widely used to assess crop water productivity for maize and to study the 

impact of water management strategies on maize production (Kisekka et al., 2017; Sen et al., 

2023). The model incorporates a comprehensive water balance approach, considering various 

inputs and outputs for the maize crop. These inputs include rainfall, irrigation, and soil water 

content, while outputs include evapotranspiration (ET) and drainage losses. The model estimates 

how efficiently the maize crop uses water to produce yield by simulating the water balance. 

Nonetheless, other crop models can accurately estimate crop water productivity, such as the FAO 

Aqua Crop model. The Aqua Crop model simulates attainable yields of major herbaceous crops as 

a function of water consumption under rainfed, supplemental, deficit, and full irrigation conditions. 

Similarly, the model has been widely used to assess water productivity (Mostafa et al., 2023); 

(Shan et al., 2023).  Additionally, some studies have proposed a combined method for estimating 

the spatial and temporal variation of crop water productivity under deficit irrigation scenarios 

based on the Aqua Crop model (Ahmadpour et al., 2022). 
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2.2 Crop Water Productivity Estimation 

The CWP estimation is achieved by the ratio of yield and actual evapotranspiration (ETa) 

(Talpur et al., 2023; Yihun et al., 2013). 

The phenological period, which refers to crop growth and development stages, is crucial in 

estimating ET and crop yield (H. Gao et al., 2023). Factors such as crop coefficient (Kc) and 

harvest index (HI), which vary during different phenological periods, are considered in estimating 

ET and yield. Different crops have varying crop phenology, growing periods, quantity harvested, 

and crop response to the environmental conditions that influence crop yield. The rate of water loss 

from crops through transpiration (crop transpiration) is determined by taking the reference 

evapotranspiration value (ETo) for a particular region and multiplying it by a crop coefficient 

(KcTr) that is specific to the crop type. The crop coefficient adjusts the reference 

evapotranspiration to account for differences between crops in transpiration rates under the same 

environmental conditions. According to FAO, the crop coefficient is proportional to canopy cover 

and varies throughout the life cycle of a crop. It is affected by water stress, which can affect canopy 

development and induce stomata closure, directly affecting crop transpiration. A study by (H. Gao 

et al., 2023) utilized the dry matter mass–harvest index, crop Kc, based on crop phenology to map 

crop water productivity of maize. 

The evapotranspiration (ET) formula estimates the amount of water crops use. The ET 

formula considers temperature, humidity, wind speed, and solar radiation factors. The Penman-

Monteith equation is a widely used ET formula recommended by the United Nations Food and 

Agriculture Organization (FAO). The Penman-Monteith equation combines energy balance and 

aerodynamic resistance equations and is considered the most accurate method for estimating ET. 

(Wang et al., 2023; (Hassan et al., 2022) and employed the ET formula in the estimation of 

evapotranspiration which is an important component of CWP estimation. 

Several studies have been conducted using different methods and models to estimate the 

crop water productivity of maize. A study in Mexico used locally developed crop coefficient 

curves and United Nations Food and Agriculture Organization (FAO) crop coefficients to estimate 

maize water use and water productivity. One study proposed an ensemble approach for identifying 

the virtual water content (VWC) of main crops on the Korean Peninsula in past and future climates. 

The ensemble VWC is calculated using three types of crop yields and fifteen consumptive amounts 
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of water use in the past and the future (Lim et al., 2017. Future projections predicted declining 

yields for both crops, suggesting that these reductions could lessen future water demand. 

CWP Estimation Methods 

Estimation methods vary depending on the region and the crops being cultivated. They are 

mainly grouped into field-based, modelling and simulation, and remote sensing and machine 

learning methods.  Every method has its advantages and disadvantages. 

2.2.1 Surface Energy Balance Algorithm (SEBAL) 

SEBAL has proven to be a valuable tool for water resource management, agricultural 

planning, and environmental monitoring, providing reliable estimates of evapotranspiration and 

surface energy fluxes over large areas. It has been widely adopted in various research and 

operational applications worldwide because it can utilize freely available satellite data and provide 

valuable information for water-scarce regions. The Surface Energy Balance Algorithm (SEBAL) 

is a method used to estimate evapotranspiration (ET) using remote sensing and the energy balance 

principle (Gibson et al., 2013). It was developed to analyze thermal infrared remote sensing data 

from satellites like the Landsat series to monitor and manage water resources and agriculture 

efficiently. Souza et al., 2023 carried out a study that estimated the evapotranspiration of irrigated 

açaí plants in eastern Amazonia using SEBAL. The results showed good agreement with the 

Bowen ratio method, and SEBAL was useful for irrigation management and reducing water losses. 

Similarly, (Gao et al., 2023; Kamyab et al., 2022; Bansouleh et al., 2015; PACHAC HUERTA & 

CHÁVARRI VELARDE, 2019) and more recently used this model in the estimation of 

evapotranspiration proved to be more efficient. SEBAL is limited for accurate evapotranspiration 

Estimation. SEBAL relies on spatial information, such as land surface temperature and vegetation 

indices, which vary across different areas. This spatial dependence can introduce uncertainties in 

the estimation of evapotranspiration. This is due to the reliance on anchor pixels. (Prakash Mohan 

et al., 2020), Properly outline the limitation of anchor pixels. Another limitation of this Algorithm 

is wind speed observation. SEBAL requires accurate wind speed data for calculating each pixel's 

dry/wet endpoints. However, wind speed observations are known to have high temporal and spatial 

variations and may not be routinely available, especially in heterogeneous areas. SEBAL is 

sensitive to vegetation parameters, such as the Normalized Difference Vegetation Index (NDVI), 
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which estimates the vegetation cover fraction. Inaccurate or incomplete vegetation information 

can affect the accuracy of SEBAL estimates (Ruhoff et al., 2012). 

Surface Energy Balance System (SEBS) is another remote sensing-based algorithm that 

estimates evapotranspiration (ET) and surface energy fluxes from satellite data. It was developed 

to overcome some limitations of the Surface Energy Balance Algorithm (SEBAL) and provide 

more accurate and physically based estimates of surface energy fluxes and ET. Similar to SEBAL, 

there are discrepancies in the reported accuracy of the SEBS model due to known model 

sensitivities. Its performance may vary depending on the input data quality and the specific 

characteristics of the study area. SEBS requires accurate vegetation parameters to be obtained, 

especially in agricultural areas where accurate vegetation parameters can be obtained, high-

resolution imagery with low sensor zenith angles is available, and canopy cover is complete. This 

requirement may limit the applicability of SEBS in areas where such data is not readily available 

(Gibson et al., 2013). 

2.2.2 Field-Based CWP Methods 

Several field estimation methods can improve CWP, including lysimeter measurement, 

nuclear techniques, modeling approaches, field observations, and genetic enhancement. Lysimeter 

measurement and nuclear techniques have been used to improve water management, saving water 

by reducing the loss of components the plants do not use and thus enhancing water productivity 

(WP) (Abou Zakhem et al., 2019). These techniques involve measuring soil water content, 

evaporation, and deep percolation to determine the amount of water plants use and the amount lost 

to the environment. However, this method is limited to a small scale. 

Shoukat et al. (2021) conducted a field study to estimate wheat crop water productivity 

(CWP) under different irrigation and fertilizer regimes. Using a randomized block design with 

three replications, they applied three irrigation treatments - full, 20% deficit, and 40% deficit 

irrigation relative to the crop evapotranspiration (ETC) estimated by the CROPWAT model. 

Additionally, three nitrogen fertilizer treatments were applied at different wheat growth stages. By 

measuring the resulting wheat yields, yield components, nutrient utilization, and water use 

efficiencies, they could estimate CWP under different management scenarios. A commonly used 

field method for CWP estimation is the harvest method. The harvest method involves measuring 

the crop yield and the amount of water used for irrigation, then calculating crop water productivity 
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(CWP) as the yield-to-water use ratio. This method provides a direct measure of the productivity 

of a crop in terms of water use efficiency. The method faces extent limitations, especially for large 

spatial areas, and data availability, especially for the amount of water lost. Field-based methods 

may only be equally applicable to some crop types as different crops have diverse water 

requirements, growth patterns, and responses to water. In addition, CWP can change over time due 

to climate variability, seasonal fluctuations, and other factors. Field-based methods might provide 

only a snapshot of CWP for a specific period, limiting their ability to capture long-term trends. 

2.2.3 Remote sensing and Machine learning Approaches 

Remote sensing is a technique used to estimate crop water productivity by analyzing data 

collected from a distance, such as satellite imagery. This method has become increasingly popular 

in recent years due to its ability to support management, monitoring, and controlling activities at 

different spatial and temporal scales (Dalla Marta et al., 2018). Remote sensing has revolutionized 

monitoring and estimating crop water productivity (CWP) by providing valuable data on crop 

health, water stress, and environmental conditions over large agricultural areas. With the ability to 

gather information from satellites, drones, and other airborne platforms, remote sensing techniques 

have become essential for sustainable water management in agriculture. (Li et al., 2008; Talpur et 

al. 2023; Gao et al., 2023; Spiliotopoulos et al., 2023 and Darwish et al., 2023) Successfully 

utilized remote sensing technologies to estimate crop water use and productivity. 

Remote sensing indices are utilized to estimate crop water productivity. Commonly used 

indices include NDVI (Mohanasundaram et al., 2023; Pandya et al., 2023; Farrell et al., 2018), 

EVI (Jaafar & Ahmad, 2015; (Tang et al., 2015), NDWI (Singh et al., 2021; (Z. Wang et al., 2009) 

and TVDI (Holzman & Rivas, 2016) and more. NDVI is one of the most widely used remote 

sensing indices for assessing vegetation health. It quantifies the density of green vegetation and 

indicates plant Vigor and growth. NDVI values near +1 indicate healthy, thriving vegetation, while 

values closer to -1 indicate stressed or sparse vegetation. Monitoring NDVI over time can infer 

changes in crop water productivity. EVI is an improvement on NDVI, designed to reduce 

atmospheric influences and improve sensitivity at high vegetation densities. It provides a more 

accurate representation of vegetation conditions, making it suitable for areas with dense vegetation 

cover or during periods of high atmospheric interference. TVDI combines thermal infrared data 

with NDVI to assess water stress in crops. It uses the difference between the daytime land surface 
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and potential temperatures under non-water-stressed conditions. TVDI is beneficial for monitoring 

crop water status, especially in regions where water scarcity is a concern. 

On the other hand, machine learning (ML) techniques have been increasingly employed in 

the agricultural field to improve the accuracy and efficiency of crop water productivity estimation. 

This technique has proven to be more efficient in crop yield prediction (Ashwitha & Latha, 2022), 

water demand forecasting (Emami et al., 2022), remote sensing and Image analysis (Thapa et al., 

2023), drought monitoring and mitigation, precision Irrigation, and agriculture. Machine learning 

techniques offer powerful tools to analyze complex datasets, predict crop water requirements, and 

enhance water productivity in agriculture. 

Despite They also have limitations despite using remote sensing and machine learning in 

crop water productivity estimation. The limitation may be due to data availability and quality. 

Remote sensing relies on data from satellites and other sensors, and the availability and quality of 

this data can vary. Cloud cover, sensor malfunctions, and limited satellite revisit frequency can 

lead to gaps in data, making it challenging to get consistent and timely information for accurate 

estimations. Another limitation is spatial and temporal resolution. There may need to be more than 

the spatial resolution of remote sensing data to capture small-scale variations within fields or 

individual plants. Similarly, the temporal resolution may only sometimes be high enough to 

capture rapid changes in crop water needs, especially in rapidly evolving weather conditions. 

Finally, the complexity of the crop-water relationship poses a significant challenge in accurate 

water productivity estimation. The relationship between crop water productivity and remote 

sensing parameters is complex and influenced by various factors like crop type, stage of growth, 

and weather conditions. Capturing these complex interactions in a single model can be challenging. 
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3. Materials and methods 

3.1 Study area  

The Bura irrigation scheme is the study area located in Tana River County (1°11'39.1S, 

39°50'23.0"E). The scheme is one of the largest and oldest irrigation projects in Kenya. It was 

established in the 1978s and covers an area of about 12,000 acres gazette area and 10,000 acres 

under irrigation (National Irrigation Authority, 2023). The primary water source is from River 

Tana, which is 50 km away and maize is the main crop grown in the area. Other crops grown in 

the area include green grams, cowpeas, cotton, watermelon, sugarcane, and onions.  

Low and erratic rainfall patterns characterize the scheme. The average annual rainfall in 

the region is relatively low, ranging from 200 to 600 millimeters (8 to 24 inches). This results in 

an average of about 400mm of rainfall in the region (Muigai David et al., 2019). The rainfall is 

highly variable, with the most precipitation occurring during the short rainy season from March to 

May and a shorter second rainy season from October to December (Mbayaki, 2021). Drought 

periods are standard, and rainfall distribution can vary significantly from year to year. 

Due to the arid conditions, the Bura irrigation scheme's evapotranspiration rates are 

relatively high. High temperatures and low humidity contribute to increased evapotranspiration 

rates, which can impact water availability for crops. 

 

Figure 3. 1 Study area map – Bura Irrigation Scheme. 
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3.2 Data 

This research utilizes satellite imagery and ground-based data to analyze crop productivity. 

Satellite data was acquired from the Google Earth Engine via its Python API for the five years 

between 2018 and 2022, focusing on images from the crop growing seasons. 

3 .2.1 Meteorological Data 

The availability of consistent, long, and complete time series of meteorological data is 

critical for estimating crop water requirements because weather is the most important input 

variable for assessing crop evapotranspiration and determining soil water deficit. This study used 

the ERA5 daily Grided dataset accessible from the GEE catalog and the local meteorological 

station dataset. ERA5 is the fifth-generation ECMWF reanalysis of the global climate and weather 

data of the previous eight decades. Data has been accessible since 1940 (Copernicus, 2018). The 

dataset contains essential atmospheric meteorological factors such as air temperature, pressure, 

and wind at various altitudes, as well as surface parameters such as rainfall and sea parameters 

such as sea-surface temperature and wave height. The daily homogenized, filtered, reviewed, and 

pre-processed (outliers removed) data of minimum temperature (Tmin), maximum temperature 

(Tmax), mean temperature (Tmean), Precipitation, incoming solar radiation, vapor pressure, and 

wind speed (u -component at 10m high above the ground) were acquired from Google Earth 

Engine (GEE) data catalog for a period of five years; between 2018 to 2022. In the case of vapor 

pressure, the information may not be directly available in the ERA5 dataset. However, it was 

estimated using atmospheric parameters such as air temperature and relative humidity, as 

previously implemented by (Pelosi et al., 2022) on crop water requirement studies. 

Similarly, daily weather data for the Garissa weather station was acquired from the Kenya 

Meteorological Department on request. This was for the same period and was used as part of the 

ground validation data and the actual ground yield data. More accurate data could be acquired at 

the exact field level and in several locations, but this was limited in this study. 

Optical Satellite Imagery Datasets 

This research acquired several optical datasets from the GEE platform, including MODIS, 

Landsat 8, and Sentinel 2 datasets. MODIS provided high temporal resolution data of up to daily 

with an average 8-day temporal resolution.  Three surface reflectance products were used for data 
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fusion. In this case, MOD09A1.061 Terra Surface Reflectance 8-Day Global 500m product, USGS 

Landsat 8 Level 2 Collection 2 Tier 1, and Sentinel-2 MSI Multispectral Instrument Level-2A 

dataset were accessed from the GEE data catalog using Python API. Landsat 8 dataset has a spatial 

resolution of 30m, and sentinel 2 has the B2 - B4 and B8 having a spatial resolution of 10m. To 

achieve a harmonized resolution, resampling was performed on the datasets to achieve a 10m 

spatial resolution. Table 3.1 below summarizes the data used in this study. 

Table 3.0.1 Datasets used in this study 

Data Description/Resolution Source 

Temperature (Tmin, Tmax), 

Incoming Solar radiation, 

vapor pressure, Wind speed, 

and Precipitation 

From ERA5_L and Daily 

Dataset and  

Actual Meteorological Local 

Station Data. 

ECMWF/  

KMD (Kenya Meteorological 

Department) 

Evapotranspiration (ET) 8-Days at 500m resolution MODIS 

Surface reflectance (Derived 

Dataset: NDVI, MSAVI, EVI, 

etc.) 

10m - Fused dataset Sentinel 2, Landsat 8 OLI, 

MODIS 
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3.3 Methodology Flowchart 

 

Figure 3. 2 Flowchart Diagram 
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3.4 Data Fusion and Indices Calculation 

3.4.1 Daily Imagery Dataset 

The increased availability and diversity of global satellite products and new algorithms 

have opened up enormous opportunities for creating new levels of data with varied geographical, 

temporal, and spectral resolutions (Dhillon et al., 2023).  MODIS has a short return interval, and 

the data quality is consistent. However, because of the limited spatial resolution, it does not apply 

to the small-scale region. Sentinel-2 and Landsat 8 data have a better spatial resolution of about 

10m and 30m, the lowest value for some bands, than MODIS data, although the data quality is 

unreliable 

Implementing the fusion algorithm for the three datasets was based on a method 

implemented by (H. Gao et al., 2023) by extending the formula used with one for Landsat. 

However, several fusion algorithms do exist. An example is the improved spatial and temporal 

data fusion approach (ISTDFA) used by (Wu et al., 2018) to fuse MODIS and Landsat. Another 

algorithm used was STAIR 2.0 to fuse MODIS, Sentinel 2, and Landsat. Other commonly used 

algorithms similar to the ones employed here are the Spatial and Temporal Adaptive Reflectance 

Fusion Model (STARFM) and two extended data fusion techniques, STAARCH and ESTARFM, 

which have been utilized in prior studies to integrate MODIS and Landsat data (F. Gao et al., 

2015). In this study, the fusion algorithm used the formula below to obtain a daily 10 m resolution 

dataset. 

  (1) 

        (2) 
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        (3) 

Where: 

● 𝑉𝐻 (𝑡𝑖)  - Value of the fused image pixel at time 𝑡𝑖 

● 𝑉𝑀 (𝑡𝑖)  - Value of the MODIS image pixel at a time 𝑡𝑖 

● 𝑉𝑇 (𝑡𝑗)   - Value of the Sentinel-2 image pixel at time (𝑡𝑗) 

● 𝑉𝐿 (𝑡𝑘) - Value of the Landsat 8 image pixel at time 𝑡𝑘 

● N - Number of Sentinel-2 images 

● M - Number of Landsat 8 images 

● 𝑡𝑖  - Day of Year (DOY) corresponding to the MODIS data. 

● 𝑡𝑗  - DOY corresponding to the Sentinel-2 data 

● 𝑡𝑘  - DOY corresponding to the Landsat 8 data. 

● ω (𝑡𝑖 , 𝑡𝑗  ) - Weight of the Sentinel-2 image at a time 𝑡𝑖, 𝑡𝑗   

● ω (𝑡𝑖 , 𝑡𝑘 ) - Weight of the Landsat 8 image at a time 𝑡𝑖 , 𝑡𝑘  

● K - The empirical coefficient accounts for the influence of missing Sentinel-2 and     

Landsat 8 images on data fusion. 

The fusion process involved data preprocessing, such as performing atmospheric 

corrections on the Landsat 8 and Sentinel 2 images. Cloud masking and filtering were performed 

to ensure that cloud-free photos were obtained for fusion. This methodology adopted a procedure 

utilized by (Luo et al., 2020) in the actualization of the STAIR 2.0 algorithm. This involved cloud 

removal, resembling the MODIS dataset from 500m to 30m spatial resolution, and fusing MODIS 

with Landsat, as shown in equation (1) above.  Similarly, atmospheric corrections, co-registration, 

and cloud removal and filtering were performed on the Sentinel-2 dataset, fused with a resampled 

10 m resolution MODIS-Landsat 8 dataset to 10 m resolution daily dataset collection between 

2018 and 2022. 

Figure 3.3 below shows a sample NDVI map comparing the output from the fused dataset 

and coarse 500m resolution MODIS NDVI between January and December 2022. This helps 

achieve high spatial and temporal resolution for the fused dataset, ensuring improved crop 

monitoring and metric generation within the study area. 
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Figure 3. 3 Comparison of Daily MODIS and fused dataset 

3.4.2 Indices 

The study calculated several indices to support the analysis of CWP and machine learning 

modeling. The indices are drought-based, vegetation-based, soil-based, and water-based. They 

include NDVI, VCI, and more.   

Table 3.2 below summarizes all the indices calculated and used in the study. 

 

Table 3.2 Spectral indices, Expressions, and references 

Indices Expression Use Case/ Reference 

NDVI (NIR - Red) / (NIR + Red) (Dhau et al., 2021; Bolfe et al., 2023) 

EVI 2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * 

Blue + 1)) 

(Dhau et al., 2021) 
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GNDVI (NIR - Green) / (NIR + Green) (Dhau et al., 2021) 

MSAVI (2 * NIR + 1 – sqrt ((2 * NIR + 1) ^2 - 8 * 

(NIR - Red))) / 2 

(Dhau et al., 2021) 

MNDWI (Green- SWIR)/ (Green + SWIR) 

 

(Agilandeeswari et al., 2022; 

Laonamsai et al., 2023) 

EDI (PET - ET) / PET (Khan et al., 2018) 

VCI (NDVIi - NDVImin) / (NDVImax - 

NDVImin) 

(Sánchez et al., 2016; Zhao et al., 2022) 

TCI (LSTmax - LSTi) / (LSTmax - LSTmin) (Sánchez et al., 2016; Zhao et al., 2022) 

SMCI (SMi - SMmin) / (SMmax - SMmin) (Sánchez et al., 2016; Zhao et al., 2022) 

 

3.5 Crop Yield 

Yield calculation in this study is achieved by determining total dry matter biomass and 

harvest index. Harvest index is a critical agricultural term relating to crop plants' capacity to 

convert photosynthetically fixed carbon into edible yield, frequently the crop's harvested 

component such as grains, fruits, or vegetables.  Combined product of harvest index and 

summation of biomass results to yield estimate. In this case, the Biomass-Harvest index method is 

used. The harvest index method is inherited from a study by (Moriondo et al., 2007). 

HI =       𝐻𝐼𝑚𝑎𝑥 −  𝐻𝐼.𝑟𝑎𝑛𝑔𝑒 (1 −  
𝑁𝐷𝑉𝐼𝑃𝑂𝑆𝑇

𝑁𝐷𝑉𝐼𝑃𝑅𝐸
)       (4) 

Where: 

HI  - Actual Harvest index for C4 crop (maize/corn) 

𝐻𝐼𝑚𝑎𝑥  - Maximum harvest index for maize. In C4 crops have been chosen to be 60% (0.6) 

𝐻𝐼𝑟𝑎𝑛𝑔𝑒 - The range selected is 0.2 for C4 crops. 
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𝑁𝐷𝑉𝐼𝑃𝑂𝑆𝑇-  The mean value of NDVI between flowering and maturity  

𝑁𝐷𝑉𝐼𝑃𝑅𝐸- The mean value of NDVI between planting and flowering for maize crop. 

 

Dry matter Biomass estimation utilizes NDVI values and solar radiation as major input 

parameters. According to Bastiaanssen & Ali, 2003, Biomass can be estimated using the 

following formula. 

Biomass =  𝛴 (0.864 x 𝜀  x APAR)        (5) 

Where:  

𝜀  is the light use efficiency (LUE), and APAR is the 24-hour absorbed photosynthetically active 

radiation (𝑊/𝑚2). APAR is given as shown; 

APAR = 0.48 x f x S↓          (6) 

Where f refers to the APAR fraction which changes with respect to the leaf area index. S↓ 

Represents the incoming solar radiation. This component is obtained from weather data. The 

value of 0.48 is an average or typical value that has been found to represent the efficiency of 

plants in converting PAR into chemical energy through photosynthesis. It is also important to 

note that the PAR value describes the total radiation available for photosynthesis assuming 

leaves intercept all sunlight. This is a very speculative estimate since leaves both transmit and 

reflect solar radiation. 

Determination of the fraction of APAR (f) depends on vegetation indices of the crop at a 

specific point in time. In this case, NDVI is specifically used as the main index in the calculation 

of the fraction of APAR. Given by the expression; 

f = -0.161 + 1.257 𝑁𝐷𝑉𝐼𝑡        (7) 

Another important component used in the determination of Biomass is the LUE. LUE 

quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation. 

Given by the expression; 

𝜀  = 𝜀𝑚𝑎𝑥x g(T) x g(D) x 𝜆          (8) 
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𝜀𝑚𝑎𝑥 represent the max value for C4 crops like corn/maize. A study determined  𝜀𝑚𝑎𝑥to be 

approximately 2.5  𝑔𝑀𝐽−1 (Huang et al., 2022). Similarly, g(D) accounts for vapour pressure, 

and g(T) accounts for crop heat stress. Both g(T) and g(D) and scalar quantities. Finally,  𝜆  

represents the water stress mainly obtained as an evaporative fraction. Utilizing results from 

biomass and harvest index (HI), yield is then obtained by the following expression; 

Yield (Y) = Biomass x HI         (9) 

3.6 Evapotranspiration Estimation 

The estimation of actual ET utilizing the SEBAL algorithm parameters was achieved by 

the following formular, which is based on thermal and multispectral remote sensing datasets that 

compute latent heat flux (LE) as a residual by subtracting the soil heat flux and sensible heat flux 

from the instantaneous surface energy balance equation's net radiation (Rn) (Gonçalves et al., 

2022). In the computation of ET, both weather data and satellite images are used. LE is 

expressed as shown in equation (10). 

 

LE = Rn - G - H          (10) 

 

H is the instantaneous sensible heat flux (𝑊/𝑚2), and G is the soil heat flux (𝑊/𝑚2). 

Furthermore, Rn and G are determined as follows; 

 

Rn = (1 - α) Rs↓ + Rl↓ - Rl↑ - (1 - ε0) Rl↓       (11) 

 
𝑮

𝑹𝒏
 = 𝛼(𝑇𝑆- 273.15) (0.0038𝛼 + 0.0074𝛼2)( 1 - 0.98NDV𝑙4)     (12) 

Where 𝛼 is the surface albedo calculated from satellite image bands according to (Tasumi 

et al., 2008) that demonstrated this using Landsat image bands? Rs↓ represents the incoming 

short-wave radiation, Rl↓ is the incoming long wave radiation, Rl↑ the outgoing longwave 

radiation, 

and ε0 is the surface thermal emissivity.  According to (Jaafar & Ahmad, 2020), Ts, corr is 

the corrected land surface temperature (Ts) in K based on the DEM map and the difference 

between extraterrestrial solar radiation on sloping and flat terrains to account for temperature 

variations owing to common elevation data and slope. 

 

The automated statistical technique used to choose the hot and cold endmembers is a 

reduced version of the CIMEC algorithm used in METRIC. Endmember candidates are chosen 

based on percentiles of LST and normalized difference vegetation index (NDVI) readings. To 

calibrate the dT function, the CIMEC process is employed. Surface temperature, wind speed, 
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surface roughness, and surface-to-air temperature gradients are all used to determine sensible 

heat flow (H). 

 

𝐻 =  
𝜌𝑎𝐶𝑝𝑑𝑇

𝑟𝑎ℎ
           (13) 

 

Where Cp is the specific heat capacity and is the aerodynamic resistance of turbulent heat 

transport from the evaporating surface at height z1 to the air above the evaporating surface z2, to 

solve the iteration process, selecting hot and cold endmembers is necessary. In this case linear 

relationship between 𝑇𝑆 and (dT) is assumed; a and b coefficients are empirically determined for 

each image. 

 

dT = a + b𝑇𝑆           (14) 

More details from a research paper done by Laipelt et al., 2021. 

 

The evaporative fraction (𝛬) is expressed as  

 

𝛬 = 
𝐿𝐸

𝑅𝑛 − 𝐺
 ;          (16) 

 

To obtain daily ET, the following expression is used within the SEBAL algorithm. 

  

 

 𝐸𝑇𝑎24ℎ = 
 𝛬 𝑅𝑛24 

𝜆
         (16)  

 

Where is the latent heat of vaporization (MJ·kg-1). 

 

In addition, the maize crop coefficient was calculated utilizing the Penman-Monteith 

equation (Wang et al., 2023) which FAO recommends. ETa is given by the expression; 

 

𝐸𝑇𝑎 = 𝐸𝑇0 × 𝐾𝑐          (17) 

𝐸𝑇0 is the daily potential evapotranspiration and 𝐾𝑐 is the crop coefficient for maize at the 

corresponding growth stage. 

 

 𝐸𝑇0 =  
0.408𝛥 (𝑅𝑛 − 𝐺) + 𝛾 

900

𝑇𝑚𝑒𝑎𝑛+273
 𝑢10 (.𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾 (1 +0.34 𝑢10)
       (18) 

 

Where 𝛥 represent the slope of the saturation of water pressure curve, 𝑇𝑚𝑒𝑎𝑛 is the mean of daily 

air temperature at 10m height in degrees Celsius, 𝑢10 is the speed of wind at 10m height in 

meters per second, 𝑒𝑎 represent the actual vapour pressure, and is the saturation vapour pressure. 

The difference of and gives the saturation vapour pressure deficit. 𝛾 is the psychrometric 



 

- 34 - 

 

constant. G is as previously defined—more on the calculation of each component fellows 

(Gebremedhin et al., 2022). 

 

 Crop coefficient (Kc) is a spatially and temporary variable depending on the crop type 

and the growth stage. The determination of Kc values followed expressions documented by 

(Cemek et al., 2023). Therefore, the combination of ETa and ETo is used to determine the 

correlation between Kc and NDVI within the study area.  According to FAO, Kc values ranges 

from 0.2 to 1.2 with the following periodic breakdown: initial stage, crop development stage, 

mid-development stage, and late stage. 

 

3.7 Crop Water Productivity 

CWP then estimated using crop determined yield (Equation 9) and crop 

evapotranspiration (Equation 16). Yield units are in kilograms per meter squared (kg/m2) and 

evapotranspiration units are m3/m2. Water productivity maps were an output of dividing 

agricultural yield production results (Figure 4.5 and 4.6) by water use results (ET results in 

Figure 4.8 and Figure 4.9). The expression for CWP is as shown in equation 19. 

 

CWP = (Yield (Y)) / (10 x ETamean)         (19) 

 

 where ETamean is the mean actual evapotranspiration over the growing period when the 

estimation is performed 

 

3.8 Machine Learning  

 

3.8.1 Machine learning models used to estimate Yield, ETa, 

and CWP 

This section utilizes three machine learning models: Random Forest Regressor, Support 

vector machine, and Extreme Gradient Boosting. 

Random Forest (RF) leverages the power of multiple decision trees by training them on 

diverse subsets of the training data through bootstrapping, ultimately creating a robust and 

integrated learning algorithm (Elbeltagi et al., 2022). The outcome of Random Forest (RF) 

approximations consists of the averages from each tree. As a result, RF can reduce variance and 

achieve more accurate predictions compared to typical tree-based algorithms. Nonetheless, in 

cases of predicting extreme observations, it can introduce bias. In particular, random forest 

predictions tend to be overly optimistic when there are limited observations available. In this 
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research, bias correction followed the RF bias correction flow applied by (Zhao et al., 2022). The 

scikit-learn package (Pedregosa et al., 2011) was utilized to train Random Forest regressors 

independently on each dataset. 

Support Vector Regression (SVR) is a machine learning approach grounded in Vapnik-

Chervonenkis (VC) theory and the principle of structural risk minimization (SRM). SVM is the 

machine learning algorithm that comes closest to deep learning. A two-layer neural network is 

equivalent to a nonlinear SVM. A multi-layer neural network may be simulated by adding extra 

kernel functions to nonlinear SVM (Mountrakis et al., 2011). SVR extends its applicability to 

nonlinear regression tasks by utilizing kernel functions, which help transform input data into a 

higher-dimensional feature space. SVR incorporates the concept of slack variables during 

training, allowing the model to accommodate and tolerate specific errors. Including slack 

variables enhances the model's capacity for generalization (Xu et al., 2023). In estimating ET, 

Yield, and CWP, the non-linear radial basis function kernel function is used. This kernel function 

performs better than other kernels for the SVM model. The optimal hypermeters are determined 

where C for the kernel function is determined through trial and error. 

Extreme Gradient Boosting (XGBoost) is a distributed gradient boosting library built to 

be efficient, adaptable, and portable. It employs machine learning methods using the Gradient 

Boosting framework. It utilizes a second-order Taylor expansion of the target function and the 

second derivative to enhance the speed of model convergence during training. Furthermore, a 

regularization component is incorporated into the target function to manage the complexity of 

the tree, resulting in a more straightforward model and guarding against overfitting (Geng et al., 

2021). XGBoost introduces a novel sparsity-aware algorithm for handling sparse data and a 

weighted quantile sketch for approximate tree learning. The sparsity-aware algorithm is designed 

to efficiently handle sparse data, which is common in many real-world applications. It optimizes 

the tree construction process by only considering non-zero values, reducing the computational 

cost and memory usage.  The weighted quantile sketch is a technique introduced in Xgboost to 

handle weighted data. It allows Xgboost to find quantiles on weighted data, essential for accurate 

tree learning. This technique is the first method to solve the problem of finding quantiles on 

weighted data. In this study, some of the parameters of importance used for XGBoost include 
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n_estimators, learning_rate, max_depth, subsample, and colsample_bytree. More information 

about XGBoost can be found in the documentation. 

3.8.2 Performance Metrics and Evaluation  

 Calculated ETa, CWP, and Yield data are hereby compared to the modeled data. This is 

achieved through model performance evaluation.  The dataset is split into 70% Training and 30% 

validation. To cub model overfitting, the K-fold cross-validation method is employed. To 

perform cross-validation (CV) in this study, the dataset was split into k subdivisions, explicitly 

using a 5-fold CV. In each of the 5 iterations, the model was trained, and during each iteration, a 

different fold was held out from the training set and used as the validation set. This approach 

ensures that each fold has a turn at being the validation set while the model is trained multiple 

times. 

 Model performance is assessed using mean absolute error (MAE) Equation (20), 

coefficient of determination (𝑅2) Equation (21), mean square error (MSE) Equation (22), and  

root mean square error (RMSE) Equation (23) (Elbeltagi et al., 2022). 

 

        (20) 

 

 

        (21) 

 

         (22) 

 

        (23) 

 

Where n is the sum of all points used, 𝑦𝑖 is the observed calculated value of the respective 

values of ETa, CWP, or Yield that are the target or response variables. Represent the modelled 

values, and ȳ represents the mean value of the respective reference value of the target variables. 
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4. Results 

4.1 Crop Phenology 

Study regarding crop growth stages is determined based on the cover characteristics 

within the study area. Using the NDVI and EVI, the analyzed average growth period and the 

resultant curve show each stage's dates. Figure 4.1 and Figure 4.2 visually present the vegetation 

growth characteristics for the specific day of the year. The continuous alignment of NDVI and 

EVI curves throughout reveals their significant association, emphasizing their importance in crop 

phenology assessment. This agreement highlights the durability and dependability of these 

vegetative indicators, reaffirming their importance. 

There are two main growth seasons: the long and the short growing seasons. The short 

season ranges between DOY -220/270 and 355 (August/September to December). The long 

season happens DOY-410 to 605 (late January to August). The dates agree with planting periods 

as outlined in other studies within the study area (Muigai David et al., 2019). A 1 to 2-week 

window is applied to these growth stages to ensure it captures the differences that may arise 

within the Irrigation scheme. 

The sowing period shows some discrepancy from what could happen in areas with 

complete reliance on rainfed agriculture. The study area being an irrigation scheme, the sowing 

period starts partially from zero NDVI or EVI index value as it could be in rainfed areas.  This is 

a contribution by factors such as crop rotation and continuous crop alternation within the crop 

growth stages. This implies that both the sowing and maturity of maize crops happen 

concurrently within the study between DOY – 345 (Maturity) and DOY – 405 (sowing).  
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Figure 4. 2 Crop growth curve - Representing crop phenology per growth period using EVI 

Figure 4. 1 Crop growth curve - Representation of crop phenology per growing period, using 

NDVI 
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4.2 Yield Estimation 

4.2.1 Classification 

The land cover classification, accomplished through Random Forest analysis, 

successfully identified six distinct classes: bare land, tree cover, grassland, maize, 

other crops, and water bodies. The classification results exhibit high accuracy, 

enabling precise delineation and monitoring of land use patterns. Table 4.1 shows 

the error matrix for classification using random forest for the year. 

Table 4.1 Classification error matrix obtained from classification of land use and land cover of 

Bura Irrigation Scheme using random forest, 2022 

 

Cropland delineation is achieved through classification with the primary goal of using the 

maize cropland for masking other layers of land pattern. The supervised classification using 

random forest performed well in mapping tree cover, maize, and water. The three classes have an 

accuracy of above 85, both user and producer accuracy.  

This classification was applied every year between 2018 and 2022 to determine cropland 

patterns in the study area. Figure 4.3 below shows the classification map for the year 2022. 

C
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Reference 

 Grassland Forest Maize 
Other 

Crop 

Bare 

land 
Water 

Row 

Total 

User’s 

Accuracy 

Grassland 0.188 0.009 0.153 0.162 0.012 0.017 0.542 35.60% 

Forest 0.024 83.243 1.546 0.044 0.175 0.035 83.496 97.40% 

Maize 0.201 0.339 11.005 0.023 0.141 0 11.71 94.00% 

Other 

Crop 
0.024 0.005 0.05 0.456 0.02 0.023 0.578 78.90% 

Bare land 0.001 0.089 0.149 0.113 0.568 0.001 0.92 61.70% 

Water 0.021 0.072 0.023 0.014 0.031 3.980 2.354 95.35% 

Column 

Total 
0.459 83.653 11.82 0.902 0.942 4.056 

Overall Accuracy: 

95.8% 

Producer’s 

Accuracy 
44.50% 97.40% 84.57% 57.43% 60.26% 95.12% 

Kappa: 

0.916 
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Figure 4. 3 Land Use Land Cover map 
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4.2.2 Vegetation distribution 

 

Figure 4. 4 Visualization of vegetation cover throughout the study period (2018 - 2022). 

The Normalized Difference Vegetation Index (NDVI) maps in Figure 4.4 above were 

generated for both short and long growing periods and combined periods over four years (2018, 

2019, 2021, and 2022) as part of this study on crop water productivity estimation for resilient 

agriculture. NDVI is calculated from remote sensing reflectance data and indicates vegetation 

greenness and health. 

The NDVI maps allow for spatial and temporal analysis of vegetation conditions. 

Comparing NDVI values across the different growing periods and years provides insights into 

crop productivity and crop water use efficiency. Higher NDVI values generally indicate 

healthier, greener vegetation and higher photosynthetic activity. Lower NDVI values may 

indicate water stress, poor fertility, or other factors limiting plant growth.  

The NDVI values vary between the short and long growing periods each year due to 

differences in crop phenology and water availability. During short growing periods, crops may 
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not reach full canopy cover before the end of the season, resulting in lower overall NDVI. In 

long growing periods, crops have more time to mature and develop dense, green canopies, 

leading to higher NDVI values. Finally, the combined season provides a preview of all the 

season's images merged into one. 

 

4.2.3 Seasonal Yield Distribution 

 

Figure 4. 5a Spatial Temporal Yield distribution during the short period between 2018 to 

2022. 
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The crop yield mapping from 2018-2022 revealed clear spatial and temporal patterns in 

crop production across the Bura Irrigation Scheme. The yield estimates were derived by 

Figure 4. 6 Spatial Temporal Yield distribution during the long growing period between 2018 to 

2022. 
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combining remotely sensed NDVI data with a light-use efficiency model and APAR to estimate 

biomass, which was converted to yield using a crop-specific harvest index (HI). 

For the short growing seasons, yield ranges showed high variability, with minimum 

yields as low as 457 kg/ha in 2021 and maximum maize yields up to 9178 kg/ha in 2018 (Fig. 

4.4a). The lowest yields tended to be concentrated in the northern and southern parts of the 

scheme, and the 2019 season had the highest overall yields, while 2021 had the poorest yields, 

likely due to weather fluctuations. 

The long growing seasons showed less variability, with minimum yields between 429-

671 kg/ha and maximum yields of 5586-7630 kg/ha (Fig. 4.4b). The lowest yields occurred 

primarily in the southern areas of the scheme. The highest yields were found in the northeast 

region. Overall, the long-season yields were higher and more stable than the short seasons. 

The maps reveal substantial spatial heterogeneity in crop yields, highlighting low-crop 

water productivity areas. While irrigation supports cropping in this ASAL region, water 

distribution, and drainage issues may limit yields in certain scheme parts. The temporal 

variability highlights the impacts of changing weather patterns and differences in cropping 

patterns and management. 

In addition to the spatial yield maps, average crop yield was calculated for the entire Bura 

Irrigation Scheme region for each growing season and year. For the short seasons, the average 

yield ranged from 3.12 t/ha in 2022 to 5.05 t/ha in 2020 (Table 4.1) below. The long-season 

average regional yields were lower, varying from 3.22 t/ha in 2022 to 3.76 t/ha in 2019. The 

combined average yield for both seasons fluctuated between 6.34 t/ha in 2022 and 8.68 t/ha in 

2020. The combined yield was obtained as a sum of all the season's yields in that year. A bar 

graph was generated for the same results to visualize the trend of yield production at the regional 

level within the Bura scheme (Figure 4.7) below. 
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Figure 4. 7 Yearly maize yield regional based average. 

 

Table 4. 1 Yield zonal statistics at season level and on yearly basis 

Year 

Short Season 

Yield(t/ha) 

Long Season 

Yield(t/ha) 

Combined Season Yield 

(t/ha) 

2018 4.776366357 3.271972696 8.048339053 

2019 3.207342922 3.7555 6.962842922 

2020 5.052628943 3.626553298 8.679182241 

2021 3.215566055 3.336088949 6.551655004 

2022 3.121359342 3.222519736 6.343879078 

 

4.3 Regional Evapotranspiration Estimates 

Evapotranspiration (ET) was estimated for the Bura Irrigation Scheme study area from 

2018 to 2022 using the SEBAL algorithm and Penman-Monteith equation. During the short 

growing season (Figure 4.8), ET ranged from a minimum of 9.3 mm to a maximum of 117.0 mm 
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in 2018, averaging 63.2 mm across the study period. In 2019, the range was wider, from 24 mm 

to 143.5 mm, with an average of 80.8 mm. The minimum ET stayed consistent in 2021 and 2022 

at 9.3 mm, while maximum values were 119.0 mm and 112.0 mm, respectively. Average ET for 

2021 was 64.2 mm, and 61.0 mm for 2022. 

For the long growing season (Figure 4.9), the minimum ET was 9.3 mm from 2018 to 

2022. Maximum ET reached 118.0 mm in 2018, 76.1 mm in 2019, 114.5 mm in 2021, and 143.9 

mm in 2022. The average ET for the long season was 73.3 mm in 2018, 42.7 mm in 2019, 62.4 

mm in 2021, and 78.6 mm in 2022. Overall, ET was lower and had a narrower range during the 

short growing season compared to the long season. 

       The year with the highest ET estimates in the short season was 2019, with an average 

of 80.8 mm and a maximum of 143.5 mm. For the long season, 2022 had the highest ET, with an 

average of 78.6 mm and a maximum of 143.9 mm. The lowest ET for both seasons occurred in 

2019, with an average of 42.7 mm in the long season. 

          Higher ET in a particular season and year indicates increased crop water use and 

demand. Years with higher ET likely experienced better-growing conditions, less water stress, 

and higher potential crop yields. Lower ET suggests crops were more water-limited, leading to 

reduced productivity. For example, the high ET in 2019's short season means crops had adequate 

moisture, while the low ET in the long season indicates water stress 

ET estimates from the two models were relatively consistent, indicating reliable results. 

Some variability between years can be attributed to changing weather patterns influencing 

factors like rainfall, temperature, and wind speed, which affect ET. These ET maps and estimates 

provide insights into crop water use in the Bura Irrigation Scheme over time. The data can help 

inform water management and agricultural decisions to optimize crop productivity.  

Figures 4.8 and 4.9 below show ET's spatial variability across the scheme. 
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Figure 4. 8: Short season spatial temporal distribution of Evapotranspiration 
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4.4 CWP Spatial Distribution 

CWP maps are an output based on ET and yield. It was achieved using Equation 19. The 

exact timeframe and seasons were processed, and the spatial-temporal distribution of CWP maps 

was generated. High values of CWP represent higher productivity, while lower values represent 

lower productivity. Figures 4.8 and 4.9 below show the spatial distribution of CWP between 

2018 and 2022 for short and long growing seasons.   



 

- 49 - 

 

In a short growing season, CWP ranges between a minimum value of 0 kg/m3 and 10.5 

kg/m3 for the given timeframe. Generally, the southern part of the scheme has low crop water 

productivity. The central part of the study area has a higher CWP, which is the main part where 

irrigation happens. On the other hand, the long-growing season CWP was found to range 

between 0 kg/m3 to 9.5 kg/m3. Spatially, CWP was lower in 2022 in most parts of the study area 

for both seasons. Similar observations can be made in the 2021 long season and 2019 short 

growing season. These low CWP results for the seasons contribute to high ET with low yields in 

the maize-growing regions. 
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The crop water productivity maps reveal several important spatial and temporal patterns 

across the Bura Irrigation Scheme. While the southern areas consistently showed lower CWP, 

the central and north-western irrigated zones displayed higher productivity that aligned with the 

intensive agricultural activity in this region. The maps indicate that water management and 

agronomic practices may need re-evaluation in the southern scheme to improve CWP. See Figure 

4.10 above and 4.11 below. 
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4.5 CWP, Yield and ET Trend View  

   In addition to the spatial maps, zonal statistics were calculated for each season and year 

to quantify crop water productivity (Table 4.2). The reference evapotranspiration (ET0), actual 

evapotranspiration (ETa), ETa standard deviation, yield, and CWP were summarized. This 

provides the temporal variability in critical water use and productivity metrics. 

CWP showed differences between the short and long growing seasons. In the short 

season, CWP ranged from 3.23 kg/m3 in 2019 to 6.73 kg/m3 in 2018. For the long season, CWP 

was lower, varying between 4.21 kg/m3 in 2018 to 5.88 kg/m3 in 2022. Yield also fluctuated 

year-to-year, with the lowest values in the 2019 short season (3.21 t/ha) and the 2021 long season 

(3.34 t/ha). 

Line graphs and bar plots were created to analyze further the relationships between water 

use, yield, and CWP. Figure 4.13 shows the connected trends in CWP and yield over time for 

both seasons. CWP and yields decreased in the 2019 and 2021 short seasons compared to 2018 

while remaining more stable in the long season. 
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Figure 4. 9: Trend analysis of the changes between yield and CWP for the whole period of 

study. 
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Meanwhile, Figures 4.13 and 4.14 illustrate the comparative bars of CWP, yield, and ETa 

standard deviation by season. The highest CWP and yields aligned with lower ETa variability in 

the 2018 short season and 2022 long season. ETa deviation was more significant in years with 

reduced productivity. 

Overall, the temporal graphs coupled with the spatial CWP maps provide insights into the 

factors influencing crop water productivity over the study period. The statistics and 

visualizations can guide water and yield optimization. 

 

 

Figure 4. 10: Multivariable comparison and trend analysis of CWP, Yield and Evapotranspiration 

during the short growing season. 
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Figure 4. 11: Multivariable comparison and trend analysis of CWP, Yield and Evapotranspiration 

during the long season. 

Table 4.2 Regional Zonal statistics for CWP, Eta, ETo, and Yield were obtained yearly and 

seasonal. 

Short Season Statistics 

 ET0 Eta stdETa Yield(t/ha) CWP 

Y
ea

r
 

2018 237.0842 69.47594 14.12928 4.776366357 6.730136 

2019 258.0159 96.215 9.227823 3.207342922 3.233628 

2020 237.2859 76.05709 8.942988 5.052628943 6.515204 

2021 261.6644 79.7649 9.837985 3.215566055 3.960766 

2022 249.1607 58.34623 26.39416 3.121359342 5.406843 

Long Season Statistics 

 ET0 Eta stdETa Yield(t/ha) CWP 

Y
ea

r
 

2018 215.4942 75.8447 14.69787 3.271972696 4.213657 

2019 227.6036 72.08 14.28246 3.7555 5.21018 

2020 243.2024 67.29996 19.00252 3.626553298 5.372413 

2021 249.0766 61.38575 18.32356 3.336088949 5.443546 

2022 252.2586 57.67675 33.46675 3.222519736 5.881332 
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4.6 Relative Importance of CWP Estimation Parameters  

A correlation matrix was generated to examine the relationships between the vegetation 

indices, remote sensing metrics, and the target variables of crop water productivity (CWP), 

evapotranspiration (ET), and yield, whose results are as in Figure 4.15 below. 

The vegetation indices of EVI, GNDVI, and SAVI showed strong positive correlations 

with each other, with coefficients ranging from 0.83 to 1.0. These three indices also 

demonstrated positive correlations with the target variables, with GNDVI having the strongest 

correlations of 0.19 with yield, 0.07 with CWP, and 0.05 with ET. 

The remote sensing metrics of SR, EDI, TCI, and albedo had strong inter-correlations, 

with coefficients from 0.48 to 0.79. EDI and TCI showed the highest correlations with yield at 

0.27 and 0.29, respectively. Albedo and land surface temperature (LST) were most strongly 

correlated with CWP at -0.64 and -0.49. 

 

 

Figure 4. 12: Results of the Correlation analysis for the variables used in the machine learning 

modelling. 
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An XGBoost model was developed to predict crop water productivity (CWP), yield, and 

actual evapotranspiration (ETa). The model's performance was evaluated using the metrics of 

mean absolute error (MAE), R-squared (R2), root mean squared error (RMSE), and mean 

squared error (MSE). 

For CWP, the model achieved an R2 of 0.79, indicating that the model explains 79% of 

the variability in the actual CWP values. The RMSE and MSE were 0.58 and 0.34, respectively, 

showing the errors in predicting CWP. The model performed very well for yield prediction, with 

an R2 of 0.88, a low RMSE of 0.45, and an MSE of 0.20. This demonstrates the model's strong 

ability to predict crop yield. For ETa, the model had an R2 of 0.91, so over 90% of the ETa 

variation is explained. However, the errors were higher than CWP and yield, with RMSE of 7.27 

and MSE of 52.87. So, while still good, the model's predictions of ETa were less accurate than 

for the other targets. 

Overall, the XGBoost model strongly predicted CWP, yield, and ETa from the given 

data. The highest accuracy was achieved for yield, followed by ETa and CWP. These evaluation 

metrics quantify the model's ability to generalize and accurately estimate the target variables for 

this crop system. 

The trained XGBoost model was used to generate predictions for crop water productivity 

(CWP), yield, and actual evapotranspiration (ETa) across the Bura Irrigation Scheme. Statistical 

summaries were calculated on the predictions and compared to the summaries of the actual field 

data. The model predictions had a mean of 6.12, close to the actual mean of 5.85 for CWP. The 

standard deviation of the predictions was 0.92 compared to 0.88 for the actual data. 

The predicted yield had a mean of 3.14 and a standard deviation 1.55. The actual yield 

statistics were a mean of 3.10 and a standard deviation of 1.41. So, the yield predictions aligned 

well with the actual yield distribution. ETa prediction, on the other hand, showed the most 

prominent difference from the field data. The predicted ETa mean was 56.29, and the standard 

deviation was 32.92. However, the actual ETa mean was 56.92, with a standard deviation 29.99. 

So, the model slightly overestimated the ETa mean. 

The scatter plot in Figure 4.16 allows visualization of the relationship between the 

model's predicted values and actual field-measured values for crop water productivity (CWP), 
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yield, and actual evapotranspiration (ETa). Each point on the plot represents one pair of 

predicted and observed values. The distribution and clustering of these points provide insight 

into how well the predictions correspond to the actual data. 

A linear fit line is added to the scatter plot with an equation of y=0.98x + 0.41. The slope 

of 0.98 indicates a nearly 1:1 agreement between predicted and actual values across the 

variables. This slope close to 1 demonstrates the strong correlation between model predictions 

and ground truth data. The intercept of 0.41 suggests a slight bias where the model slightly 

overestimates the field values. The fit line quantifies the close linear relationship between 

predictions and measurements. 

4.7 Xgboost Model results 

 

Figure 4. 13: XGBoost model results analysis for CWP, Yield and ET; Scatter plot. 
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4.8 Validity of Machine Learning Model (XGBoost)  

 

Figure 4. 14: Machine learning model (XGBoost) prediction residuals. 

 

A residual plot (Figure 4.17) was generated to evaluate the trained XGBoost model by 

plotting a histogram of the prediction residuals (errors). The residual is the difference between 

the model's predicted value and the actual observed value for each data point. The residual plot 

shows the highest frequency of residuals near 0, with decreasing frequencies towards the left and 

right extremes. The concentration of residuals near 0 indicates the model is making more minor 

errors overall, predicting values close to the actual observations. The tapering residuals further 

from 0 suggest more significant prediction errors occur less often. The symmetrical, bell-curve-

like shape shows that the errors are approximately normally distributed, which is ideal. 
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No strong skewness or multiple peaks are apparent, signifying the lack of systemic biases 

in the model's errors. The residual plot demonstrates that this XGBoost model accurately predicts 

the target variables, with the majority of errors small and centered on 0. Therefore, the residual 

distribution validates the model's strong performance and ability to generalize predictions across 

the dataset with minimal bias. 

The trained XGBoost model was then directly applied to a 2022 satellite image (daily 

collection for the specified short and long maize growing season) covering the Bura Irrigation 

Scheme area. Predictions were generated for crop water productivity (CWP), yield, and actual 

evapotranspiration (ETa) across the scheme using various spectral bands and vegetation indices 

as model inputs. 

The zonal statistics of the predicted CWP had a mean of 5.80 and standard deviation of 

0.25 across the study area. Compared to the actual field-measured CWP statistics of a mean of 

5.85 and a standard deviation of 0.88, the predicted mean is very close to the actual value. 

However, the model underestimates the variability in CWP, as seen in the lower standard 

deviation. The model estimated a mean of 3.27 and a standard deviation of 0.50 for predicted 

yield. The actual yield measurements had a mean of 3.10 and a higher standard deviation of 1.41. 

So, the model overestimates the actual yield mean slightly but underestimates the yield 

variability across the scheme. 

The most considerable difference between predicted and measured statistics is seen for 

ETa. The model predicted an ETa mean of 59.25 with a standard deviation 12.78. However, the 

ground measurements showed a lower ETa mean of 56.92 and a much higher variability of 

29.99. This indicates that the model is overestimating ETa while also underestimating the spatial 

differences in ETa across the study region. 
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5. Discussion 

5.1 Crop Phenology Dynamics 

Analysis of vegetation indices over time provided insights into crop growth stages and 

phenology patterns in the Bura Irrigation Scheme. The NDVI and EVI curves showed two 

distinct maize growing periods aligned with the short and long rainy seasons. 

Sowing typically occurs around late January and in the short season, sowing is done in 

late August to early September. Peak greenness and canopy cover were reached at tasseling or 

silking around late April to May in the long season and around late September to October in the 

short season. Finally, maturity and senescence phases occurred around late July to early August 

for long-season maize and mid-December for short-season crops. 

Figure 5. 1: Main Local weather dataset showing the seasonal variation in rainfall and temperature 

between 2016 to 2022 on monthly basis 
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These patterns agree well with crop calendars for the region reported by KMD and local 

agricultural agencies (Mugai et al., 2019; KALRO, 2022). Figure 5.1 shows the actual local 

weather pattern based on the KMD dataset.  

The bimodal cycles enable year-round production but can complicate irrigation and other 

management. In particular, the short-season growth stage is vulnerable to terminal moisture 

stress due to cessation of rains (KMD, 2022). 

Phenology monitoring showed that sowing periods were less discrete than typical rainfed 

systems, likely due to year-round irrigation availability allowing continuous cropping. Overlaps 

in sowing and maturity phases indicate farmers’ capacity to stagger planting dates to manage 

water demand and respond to climate variability. 

Capturing crop growth dynamics is critical for indexing vegetation health and 

parameterizing CWP models. For example, relating ETa patterns to different crop stages helps 

diagnose likely water stress causes (e.g., emergence vs. grain filling). Similarly, the timing of 

NDVI peaks and yield estimation is keyed to specific developmental milestones like flowering 

and maturity (Bastiaanssen & Ali, 2003). 

 

5.2 Analysis of Yield and ET Results 

The light-use efficiency modeling approach enabled the mapping of maize yield across 

the study area. Estimated yields showed high spatio-temporal variability, ranging from 429 kg/ha 

to 9178 kg/ha, as evidenced in the results. Research has found that factors like soil fertility, crop 

genetics, and management practices can significantly influence productivity in this region (Muli 

et al., 2015). While the model provides valuable yield estimations, ground-truthing and 

calibration using field measurements could help refine parameterization and improve accuracy 

over time (Bastiaanssen & Ali, 2003). Field collection of yield data through surveys or on-farm 

trials supports the continued advancement of the remote sensing-based yield model. 

Evapotranspiration (ET) was estimated using the SEBAL energy balance model, 

incorporating satellite imagery and weather data. Estimated ET fluctuated between 42.7 mm and 

117 mm over the study period, reflecting changing crop water demand. Prior research found that 

maize ET in similar environments varies depending on climate, soils, and irrigation. Tracking ET 
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provides insights into crop water usage dynamics and factors influencing productivity like water 

stress (Allen et al., 1998). However, uncertainties remain in the ET modeling, requiring further 

validation using lysimetry or other field techniques. Improved characterization of soil hydraulic 

properties, crop development, and micrometeorology can aid ET estimation. 

5.3 Spatio-temporal Patterns in Crop Water Productivity 

The crop water productivity (CWP) analysis for the Bura Irrigation Scheme revealed 

distinct spatial and temporal patterns. CWP showed high variability both between seasons and 

across years. In the short growing season, CWP was lowest in 2019 at 3.23 kg/m3 and highest in 

2018 at 6.73 kg/m3. For the long season, CWP ranged from` 4.21 kg/m3 in 2018 to 5.88 kg/m3 

in 2022. This aligns with findings by Muigai et al. (2019), who reported CWP between 3.9-6.5 

kg/m3 for maize in the Bura scheme, depending on the planting date. 

This variability highlights the impacts of changing weather patterns, differences in 

cropping systems, and water management across the scheme (Blatchford et al., 2018). Years with 

higher CWP, like the 2018 short season, suggest better moisture availability, while low CWP in 

the 2019 short growing period indicates water limitation reduced productivity despite irrigation 

potential (Sarshad et al., 2021). As CWP integrates crop yield and actual evapotranspiration, it 

provides an index of plant growth, vigor, and the efficiency of water use (Hellegers et al., 2009; 

Booker & Trees, 2020).  

The temporal CWP fluctuations demonstrate the need for flexible, responsive water 

management to account for inter-annual weather variability and associated crop water 

requirements in this semi-arid region (Hommadi & Almasraf, 2019). For instance, the higher 

CWP in the 2018 short season resulted from sufficient moisture availability to meet crop 

demands. Nevertheless 2019, CWP declined as crops faced water limitations during the critical 

growth stages, reducing yields (Talpur et al., 2023). Adapting irrigation scheduling and volume 

based on real-time crop water use and plant water stress monitoring could stabilize productivity 

over variable seasons.  

CWP responds to agronomic practices like irrigation, planting density, and fertilizer 

application. Thus, the CWP assessment provides an integrated measure of crop performance and 

water use efficiency to guide management. Monitoring of CWP using remote sensing offers a 
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scalable approach to benchmarking and improving agricultural water productivity in the area. 

However, several sources of uncertainty persist and require ongoing research. Soil variability, 

microclimate fluctuations, and complex crop-water interactions may not be fully captured 

(Gibson et al., 2018). Field instrumentation like soil moisture probes, weather stations, and plant 

water status sensors can provide data to refine parameterization and improve estimation 

performance (Dalla Marta et al., 2018). Higher resolution inputs from satellite, drone, or airplane 

remote sensing could better resolve within-field heterogeneity.  

5.4 Machine Learning for Enhanced CWP Estimation 

Machine learning techniques have emerged as powerful tools for enhancing crop water 

productivity (CWP) estimation using remote sensing and meteorological data. As demonstrated 

in this study, models like XGBoost can effectively integrate and analyze different data sources to 

generate reliable predictions of critical parameters, including CWP, yield, and evapotranspiration 

(Elbeltagi et al., 2022). 

Implementing XGBoost allowed the exploitation of complex interactions and patterns 

within the dataset that would be difficult to model using traditional statistical approaches. 

Virnodkar et al. (2020) discussed that machine learning algorithms like XGBoost have distinct 

advantages for handling large, multi-dimensional agricultural datasets comprising various soil, 

climate, spectral, and crop-specific variables. By capturing non-linear relationships, high-order 

interactions, and latent data structures, the XGBoost model provided robust generalization 

capability beyond the training data. 

The model evaluation confirmed the strong predictive performance of XGBoost for the 

target output variables. Metrics like the coefficient of determination (R2) and residual analysis 

demonstrated good model fit with minimal bias. As Patel et al. (2021) noted, machine-learning 

approaches require careful validation to assess real-world applicability. The residual errors 

centered around zero provided evidence that XGBoost could produce reliable CWP, yield, and 

ET estimates from unseen data in the operational setting. 

Another benefit of using XGBoost was the intrinsic feature selection, ranking the most 

informative input variables through each iteration of tree splits during model training (Islam et 

al., 2023). This allowed automated optimization of the many spectral, soil, vegetation and 
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climate variables available to determine an optimal subset for accurate CWP and ET prediction. 

Such data-driven variable selection removes subjective biases common in manual techniques. 

Overall, the machine learning methods implemented significantly advanced the crop 

water productivity assessment, providing a scalable approach to integrating large datasets and 

extracting actionable insights. 
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6. Conclusions 

In conclusion, this research used remote sensing and machine learning techniques to 

estimate crop water productivity (CWP) for maize in the Bura Irrigation Scheme from 2018-

2022. The goal was to support improved water management and agricultural resilience in this 

semi-arid region prone to drought and water scarcity. 

The study incorporated satellite imagery across multiple sensors (Landsat, Sentinel-2, 

MODIS) as well as meteorological data from ERA5 and local weather stations. Vegetation 

indices, including NDVI and EVI, enabled crop growth stage monitoring while ET was modelled 

using SEBAL energy balance and the FAO Penman-Monteith method. Crop yield was estimated 

using a light-use efficiency approach relating biomass production to absorbed photosynthetically 

active radiation and harvest index. 

The generated CWP maps and statistics revealed distinct spatial patterns, with higher 

productivity aligning to intensely irrigated zones while southern areas showed poorer CWP. 

Temporal fluctuations occurred between seasons and years, highlighting the impacts of variable 

weather and water availability on crop-water dynamics. Estimated CWP ranged from 3.2-6.7 

kg/m3 over the period, agreeing with previous local studies. The yield model performed well but 

could be further improved through calibration with field measurements. 

Machine learning, specifically the XGBoost algorithm, was implemented to enhance 

CWP, yield, and ET estimation by exploiting complex data relationships. The model evaluation 

confirmed excellent predictive capability based on metrics like R2, RMSE, and residual analysis. 

Applied to unseen satellite imagery, the trained model generated reasonable CWP, yield, and ET 

estimates across the scheme.  

Finally, this study highlighted the capabilities of emerging digital techniques for water 

productivity monitoring to support agricultural sustainability. With further refinement, the 

developed methods could aid real-time irrigation decisions and benchmarking to improve yields, 

optimize water utilization, and build regional climate change resilience. Integrating such data-

driven approaches with water governance and policy frameworks will be essential to translate 

information into action for sustainable agricultural water management. 
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Recommendations 

Expand the ground data collection to additional locations within the irrigation scheme. 

While the current analysis relied primarily on remotely sensed data, gridded, and single station 

local weather datasets, collecting in situ data on crop yields, soil moisture, weather parameters, 

and water use at more sites would allow for improved validation and parameterization of the 

CWP model across the spatial extent of the scheme. This could be achieved through test plots 

and intensive measurement campaigns during critical crop growth stages. 

Incorporate higher-resolution satellite imagery from sensors such as GeoEye, Pleiades, or 

drone and airborne data. The 10-30 m resolution data currently limits the characterization of 

fine-scale heterogeneity in factors driving field-level variations in CWP. Sub-meter satellites 

could better capture soil, topographic, and drainage variability to diagnose tightly localized yield 

constraints.  

Test alternate deep learning algorithms and ensemble approaches to improve 

generalizability. While XGBoost performed well presently, evaluating other techniques like 

neural networks or combinations of statistical and deep learning models may lead to better out-

of-sample prediction accuracy. Given the limited training dataset size, tuning model structural 

complexity could prevent overfitting. Augmenting input data through generative adversarial 

networks (GANs) is another exploration avenue.  

Integrate findings into a user-friendly decision support system for local stakeholders. 

Packaging the results into an interactive web dashboard or mobile application is imperative to 

enable accessible adoption of the CWP insights by irrigation scheme managers and agricultural 

extension officers. The system could provide real-time visualization of the spatial CWP and yield 

patterns while summarizing trends and variability for the region. User input mechanisms to 

customize recommendations based on crop types, field locations and available budget should 

also be enabled for practical utility. Leveraging such ICT tools can bridge the research-

implementation gap more effectively. 
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Appendix 

1. Data  

 

The validation data used in this project consists of weather data records provided by the 

Kenya Meteorological Department (KMD) and irrigation data from the Kenya Irrigation 

Authority. Due to data protection policies and security considerations, the complete datasets can 

only be accessed directly through requests submitted to KMD and the Irrigation Authority. 

However, presented below is a preview of the weather data records that informed the analysis 

undertaken in this project. 

Table A1: Preview of Weather Dataset from KMD 

Station Name Year Month Tmax Tmin Rainfall 

      

GARISSA METEOROLOGICAL 
STATION 2016 1  23.8 3.2 

GARISSA METEOROLOGICAL 
STATION 2016 2 36.4 24.2 10.3 

GARISSA METEOROLOGICAL 
STATION 2016 3 37.4 25.9 14.8 

GARISSA METEOROLOGICAL 
STATION 2016 4 36.7 25.6 90.2 

GARISSA METEOROLOGICAL 
STATION 2016 5  23.4 2.9 

GARISSA METEOROLOGICAL 
STATION 2016 6 32.3 22.2 3.3 

GARISSA METEOROLOGICAL 
STATION 2016 7 31.6 21.2 4 

GARISSA METEOROLOGICAL 
STATION 2016 8 31.9 20.7 1.6 

GARISSA METEOROLOGICAL 
STATION 2016 9  21.0 3.6 

GARISSA METEOROLOGICAL 
STATION 2016 10 34.6 22.7 0.7 

 …     

 ...     

 
Up to 
2022     
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2. Implementation Code and Models 

The estimation of evapotranspiration in this project was adapted and inspired by the SEBAL 

algorithm available in the open-source et-brazil on the GitHub repository. This allowed 

leveraging proven code for efficient analysis using Google Earth Engine. 

The core Python code detailing the workflows and logic I developed to implement this 

research is accessible via  Google Colab notebook on request. 

As the code spans several sections and is lengthy, it has not been appended to this report directly. 

However, researchers can conveniently review, run, and replicate the analysis using the Google 

Colab notebook. I will gladly share editable copies upon request. 

Additionally, the optimized XGBoost machine learning model for crop yield prediction is 

available through  Google Drive link: The model accepts all Sentinel-2 bands and the following 

indices as input features: ['VHI', 'SMCI', 'EVI’, ‘GNDVI’, ‘SAVI’, ‘SR,’ ‘EDI,’ ‘TCI,’ ‘albedo,’ 

‘LST’]. This allows direct integration for prediction using new satellite imagery by researchers 

seeking to build on this work. Finally, all the datasets and code can be provided on request. 

 

https://github.com/et-brasil/geeSEBAL
https://colab.research.google.com/drive/1_tiPHysrdmF18y9qvHBT9DQ6u0MsKHnZ?usp=sharing
https://drive.google.com/file/d/1Nph0TgaiPwgOfUUJYP9lr8aicNsBZDg2/view?usp=drive_link
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